Notes on Linear Programming to solve the
Product-Mix Auction
Incomplete—contains gaps
Please do not quote without permission

Elizabeth Baldwin and Paul Klemperer
January 14, 2019

These notes describe how the Bank of England’s original Product-Mix Auc-
tion, and its 2014 revision, can be implemented using linear programming. They
also describe the (open-source) implementations of these and related Auctions
that are available at http://pma.nuff.ox.ac.uk/.!

Section 1 introduces preliminaries. Section 2 describes the Bank’s
original Product-Mix Auction, and corresponds closely to the description in
Section 2 of Klemperer (2008, 2010, 2018). Section 3 describes the main
enhancement introduced in the Bank’s 2014 revision (see Frost et al., 2015,
and Klemperer, 2018). (These notes do not exactly correspond to details of
the Bank’s imple-mentations that are not publicly available.) Section 4
discusses rationing among bidders whose bids are tied. Sections 5 and 6
describe a variety of extensions and modifications of these programs.

The notes are intended for someone who knows a little about linear pro-
gramming and assume familiarity with linear programming’s ‘primal’ and ‘dual’
problems (although the discussions of the ‘dual’, below, can be skipped), but
do not assume any knowledge of algorithms for solving linear programmes.

We gratefully acknowledge substantial assistance from Simon Finster; he
also wrote Appendix 7.6, below, and developed the companion set of exam-
ples. Thanks also to Adam Gundry for his efficient coding of the programs we
describe.

LOur website also contains variants of Product-Mix Auctions solved by methods other than
linear programming (see Klemperer, 2018, especially Appendices IB and II, and Baldwin et

al., in preparation).

http://pma.nuff.ox.ac.uk/

1 Fixed quantity of each good

1.1 One Good case

Suppose that we only have one good. We first show that a linear programme
gives exactly the same answer as the Product-Mix auction.

Suppose there are bids i = 1,..., M, each bidding a maximum price v* and
wanting & units; 2° is the number each receives. Let R be the quantity available.
Consider the linear programme:

e, D v
3
such that z° < k' Vi [bid constraints]

M
and th < R [resource constraint]
i=1

and 28 > 0 Vi.

The values of z!, ..., 2™ which solve this optimisation problem are those which
pick out the highest bids and give the goods to them, subject to the bid con-
straints and the resource constraint; this is obviously exactly the solution a
one-good uniform-price auction finds.

Note also that it doesn’t make any difference whether each bid comes from
a distinct bidder, or if some bidders have placed multiple bids.

Maximising Gains from Trade

The linear programme also has a nice economic interpretation: it maximises
the gains from trade over all participants: assume each bidder bids its maximal
”willingness to pay”, v*, and that its utility is v’z — P?, where P? is the payment
it makes, so the auctioneer receives Y, P’. An efficient allocation is one which
maximises the joint surplus of all participants, Y, (viz’— P+, P = Y v'a’,
subject to the constraints, that is, solves our programme.

The Dual Problem
It is standard that the dual problem:

S

such that b + 2
and b’, z

> ' Vi
> 0V

yields the same value of the objective. Moreover, in the solution to the
dual, z is the "shadow price” on the resource constraint in the original (primal)
problem. That is, z is the marginal per-unit value of the resource. Likewise, b
is the "shadow price” on the ith bid constraint in the original programme, that
is, the marginal per-unit value of the ith bid.

It is easy to see that the value from an additional unit of resource is the
highest losing bid, while the value lost from having one unit less of the resource
is the lowest winning bid. In general, these are the same bid (and this bid
is rationed), so z is the value of this bid. If instead the lowest winning and
highest losing bids are different, a range of z (and {b’}) solve the programme
(achieve the same minimal surplus). In this event we will always choose the
lowest feasible z. So z will always be the value, v?, of the highest losing bid, 4.

Since a bid with value v’ above z is fully allocated, b = v’ — z is the
marginal per-unit joint surplus created by a winning bid, ¢ (that is, the per-unit
joint surplus from a small increase in the size of this bid). And b* = 0 for all
bids with value v* < z—these bids create no joint surplus.

Competitive Equilibrium

The allocation the original programme (and the Product-Mix auction) selects
is not only efficient; it is also supported as a competitive equilibrium by the
shadow price on the resource constraint, z. That is, if we were to set the price
of the resource at z, all participants (both the auctioneer and the bidders)
would choose exactly the allocation that the programme (and the Product-Mix
auction) assigns them.

Optimal strategy is honest bidding

It follows from the previous paragraph that if a bidder is ‘small’ enough that
its bid is unlikely to affect the Product-Mix auction’s price, then its optimal
strategy is to bid its maximum willingness to pay-it then always receives the
good when it’s worth strictly more to it than it has to pay, and never when it’s
worth strictly less than it has to pay.

1.2 Many Goods

It’s easy to generalise the above to many goods.

Suppose we have goods j = 1,..., N, with R; available of good j.

Assume, w.l.o.g., that all bids are “either/or” bids across all the goods.
(Bidding 0 for all but one good is equivalent to bidding for only that one good.)
So bid i expresses per-unit values (v, ..., v%) for a total of k* units across all
the goods.

We will refer to a bid in which vj > 0 for more than one j as a
”paired” bid.

A bid’s allocation of good j is a:; > 0, with
receives at most k’ units in total.

j\[:l zh < k' to ensure that it

So the linear programme is now:

max vigt
(w3} Z; I
N
such that Zx;

Jj=1

IN

k" Vi [bid constraints]

M
and Zx; < Rj Vj [resource constraints]
i=1
and x; > 0Vi,j.

Exactly as for the one good case, the ac; which solve this programme are those
that pick out the highest bids on each good — but now subject to that bid not
being “either/or” with an even more advantageous bid on another good.

To see this, turn again to the dual problem. Let the shadow price for the
ith bid constraint be b?, and the shadow price for the jth resource constraint be
zj. So the dual programme is

min E kzbl+g Rij
bl bM 2y, 2N 7 ;

such that b + zj 2> vl Vi, j
and bi,zj > 0Vi,j .

Given the prices z;, the programme minimises b’ such that b* + zj > 1); for all
j (and b > 0), so b® is the surplus the bid i attains on the good j for which
v} — z; is maximised (or 0 if v — z; < 0 for all j). Moreover, it follows that the
constraint b’ + z; > v;- only binds for this good (j), which is the most valuable
good to ¢ at the prices z;, so, by complementary slackness, i’s allocation xé,
of any other good j’ is zero. (Any bid for which v;» — zj < 0 for all j receives
no units of any good, and receives zero surplus.)? So each bid is allocated the
good which gives it the greatest surplus at the shadow prices on the resource
constraints, z;.

Thus the linear programme—and the Product-Mix auction—finds the efficient
allocations ({z’}), and competitive equilibrium prices ({2;}). As above, where
there is a range of solutions for the shadow prices, reflecting a range of competi-
tive equilibrium prices, we always select the lowest set of prices thus maximising
all bidders’ surpluses among this range.3

2If v? — z; = v’, — 2z, for more than one optimal 7,j’, then the bidder can be allocated
J 7 J J

any non-negative quantities summing to k¢, of these optimal goods.

3That there is a set of prices, {z;}, that is lowest for all goods, follows from the fact
that each bid is an ”either/or” good for all goods (that is, every bid expresses substitute
preferences) so it can never be that, for a given allocation, choosing a lower price for one good
requires choosing a higher price for another.

2 Variable quantities

A Product-Mix auction give the seller flexibility over the quantity of each
good available. In Klemperer (2010), the seller’s preferences over the quantities
to sell are summarised by a “supply curve”. It is not hard to see that it is equiv-
alent to think of the seller as having costs that are a function of the quantities of
the different goods sold.* Many forms of seller’s cost function are possible; we
illustrate with a specification consistent with the Bank of England’s (see Frost
et al, 2015):

e Assume the goods, j = 1,..., N, are in order of quality (so j + 1 is a
higher-quality good than j for j =1,...,N —1).

e For goods j =2,...,N.

— Let the jth “supply curve” relate the price spread of good j above
good j — 1 to the total quantity allocated of all goods superior or
equal to j. Since prices will be integers (e.g., an integer number of
“basis points” for the Bank of England), this “supply curve” is a step
function: see Figure 1

— For good j, the qth step has length sg-.

— The price increment ("margin”) the auctioneer requires for good j
above good j — 1, at the ¢th step, is ,u?.

— Let yj be the amount allocated on the gth step on good j. (So
yi < s9.)

— So we subtract pjy?

tion, for all g, j.

from the objective function of the previous sec-

— Also, Zq y;? is the total quantity allocated of all goods superior or
equal to j (so denotes how far we have gone along the horizontal axis
on Figure 1).

— So >=, i — >, v, is the total quantity allocated of good j alone.
This is equal to the amount allocated to the bidders:

ZCE; :Zy?—Zy?H for all j
i q q

(in which we think of %, = 0, for all g, here®).

4A third equivalent perspective (which we develop in Section 6) is to think of the supply
of each good as being equal to the maximum possible quantity available of that good under
any circumstances, and to think of the seller as ‘buying back’ units at the appropriate relative
prices to bring itself back to its “supply curve”. So the seller is just another buyer, but since it
knows its own preferences, its bids can be directly coded into the linear programme; its ’bids’
are the values it is willing to pay for units, that is, just the costs of units in the programme
we specify below.

PSo we will write 35, 2% =3 yf — >yl for j <N —1,and 3o, 2y <3, 4, below.

However, the constraint we use in the LP is actually an inequal-
ity: >, < 3.yl — >, yjy1- This is because the dual problem
and shadow prices behave more simply if the primal problem has in-
equality constraints, and we know that there will always be equality
in the optimal solution, because additional ys reduce the objective
function, whereas additional zs increase it. (A strict inequality would
correspond to throwing away some of the resource.)® We call this the
good j consistency constraint.

e Note that if we specify s{ such that 37 s{ = R, we have automatically
specified a maximum total quantity constraint, R.

e Specifiying steps s] with costs u? > 0 for ¢ > 1 automatically implements
a flexible total quantity. A more general way to implement a flexible
total quantity is to re-run the process for many possible sets of s? (in
particular, implying many possible maximum total quantities, R =}, sT).
We will discuss below how we can use the set of outcomes generated to
form a ‘Total Quantity Demand Schedule’. This will have Zi, j :z:; on
the horizontal axis and an appropriate increasing function of prices on
the vertical axis. This schedule can then be intersected with the ‘Total
Quantity Supply Schedule’ to give the overall solution. See section 3,
below.”

Primal problem
So the linear programme is

ii q,4
max E VT E KY;
J.q

e hul} | 45

such that (with the variables on the right-hand side being the corresponding
shadow values)

> y x§ < k; Wi b;, constraint on size of bids
yi < st Vg,V uf, constraint on length of steps
ok — (Eq yi =22, y?_H) < 0 1<j<N-1 z,good j consistency constraint
Yol — deUv <0 zn, good N consistency constraint

And all variables non-negative. We assume that u‘j— > 0% and ,ug is strictly
increasing in ¢ for all j.

SFor the Bank of England, y% is an exception because ,u% =0. So y% is “free”, and may be
“too much” in the solution, which does not matter, but we must be careful not to over-interpret
the solution for y%.

"This is the procedure currently used by the Bank of England. See Frost et al. (2015) and
Klemperer (2018, Section 3.3).

81t would not be hard to modify what follows to allow some u? < 0, but we make the
assumption in the text for simplicity since it is also consistent Witfl the Bank of England’s
context.

It is helpful to work with the sums of consistency constraints for j' > j (any

Ik

S <Y 124N W
3’24, q

We will later (Section 2.2) collect a set of ’characteristic conditions’, CC1-

CC8, that together characterise the solution. The constraints on) j x; and y?,

1 respectively), will be the

above (corresponding to the dual variables b; and u;

conditions CC1 and CC2, and (1) will be CC3.

Dual problem
The dual problem can be developed as before, to better interpret the shadow
prices:

min E kibi—i—g s?uj
bl;~-7bM;{Zj}j=1,,.,N7{u?}

i 9.3
such that
btz > vh o Vi corresp
u —zj+2zj-1 > —pj Yq,Vj>2 corresp yj,j > 2
ul —z > —pd corresp Yy

and all the variables b* and u? and z; are non-negative.

Shadow prices

The shadow price on the ith bid, b?, is the social surplus (i.e., the sum of the
marginal surpluses of the bidder and the auctioneer) from filling an additional
unit of bid 7. The shadow price, uj—, on using the gth step for goods > j, is
the marginal value of relaxing the constraint yi < s%. It is the marginal value
of being able to sell an additional unit of good j instead of a unit of good 7 — 1
without it costing the auctioneer any more.'”

The shadow price on the jth consistency constraint, z;, is the marginal value

of relaxing that constraint, that is, the marginal value of selling an additional

9b; = 0 implies either that bid i is not fulfilled at all (33; = 0 for all j) or we are indifferent
about filling the bid at the margin. In the m; # 0 case, indifference means the “cost” to the
auctioneer is the value, v? the bidder placed on this unit of good j. (We can distinguish the
cases of indifference about (i) allocating one additional unit against this bid (loosening k; to
k; + 1 would make no difference) or (ii) allocating the final unit which we actually allocated
(tightening k; to k; — 1 would make no difference). If these values are the same, the shadow
price is uniquely defined. If not, it could be either.)]

10When the constraint y;] < s? is relaxed, the good j — 1 consistency constraint implies
that the additional sale of good 7 must replace a sale of good j — 1: selling any more goods
above j would require a relaxation of constraints for these goods. For example, with 3 goods,
a lengthening of a binding step sg means the total number of units allocated to goods 2 and
3 is increased by 1; but since {sg} are unchanged, the total allocated to good 3 is unchanged,
so it follows that the total allocated on good 2 is increased by 1, and the total allocated on
good 1 is reduced by 1. A lengthening of a binding step sg means the total allocated to good
3 is increased by 1, but the total allocated to goods 2 and 3 together is unchanged, so the
total allocated to good 2 is reduced by 1.

unit of additional good j.'! So, as we discuss below, z; is the price of good j in
the auction.'?

2.1 Complementary slackness'

CS1. If x; # 0, i.e. any of good j is assigned to bid i, then b’ = vj— — zj.
CS2. If), '’ < k; then b’ = 0.

CS 3. if 3o o < > yf = >, i, then z; =0, for j # N,
and if 3°, xfy < X,y then 2y = 0.

Since b’ is independent of j we have, from CS1, that U;— — z; is independent
of j for all goods j, for which z} 7 0. So the surplus, b°, must be the same on
all goods allocated to bid 4. So since the dual constraints include b* > v} — z;
for all j, and b* > 0, it follows that if v; — z; < maxjrz;{v}, — 25,0}, then
v§ —zj < b%, and therefore (by the contrapositive of CS1) x; = 0. This will form
our ‘characteristic condition’ CC 5.

Using again the fact that the dual constraints include b* > v} —z; for all j, we
have that if 0 < max;{v} —z;}, then 0 < b’, and therefore (by the contrapositive

of CS2) >, x; = k'. This will form our ‘characteristic condition’ CCCC 6.

CS 4. If y? #0, i.e., if any of goods j and above are allocated on or beyond the
qth step of the “supply curve”, then

u?——f—ug— = zj—zj_1 forj>2
ul+pul = = for j=1

CS 5. If y§ < s then uj =0

So if any of goods j and above are allocated at all (so yjl. # 0), then z; =
zj_1+uf+pf > zj1. So [[(since] > 0)]] the z; weakly increase with j (unless
we reach a stage such that all goods > j are unallocated and irrelevant). It
follows (by the contrapositive of CS3) that the consistency constraints, (1), are
tight for all but a collection of lowest-ranked goods, for which z; =0 ; if z; > 0

11We can see this from the fact that the simplest way to relax this constraint is to give an
additional unit of good j to a bidder who is just marginal at this price. (An alternative way
to relax the constraint is to sell an additional unit of a higher valued good j’, which increases
bidder surplus by z;; but decreases seller surplus by uj., + “;1" which together have the same
effect of benefiting “society” by z; (see CS4, below).)

12We discuss below dealing with the issue that z; may not be uniquely defined. (We can
also see that the price of good j is z;, if a:; # 0,from CS1, below: since b’ is the social surplus,
and v;- is the valuation, the “cost” to the auctioneer is z;.)

13The beginning of this section isn’t needed for understanding the program-but the exam-
ples may help the reader.

then (1) holds with equality. This will form our ’characteristic condition’ CC
4-14

If u > zj — zj—1 with j > 2, or pu > 21, then since uq > 0, we have (by the
contrapos1t1ve of CS4) yj = 0. ThlS will form our characterlstlc condition’ CC
8.

Conversely, if u < zj — zj—1 with j > 2, or ul < z1, then since the dual
constraints include uj + puf > zj zj-1, we have uf > 0, and therefore (by the
contraposltlve of CS5) ;’ > s . But yq < sj is a prlmal constraint, so in this
case yj = sq This will form our charactorlstlc condition’ CC 7.

Auction Prices

It follows from the previous two results that if ¢ is the final step on which
goods j and above are allocated, then

(i) if 0 < yj < s7, that is, the step is not fully allocated, then z; —z; 1 =
for j > 2, and zl Np

(ii) if yj = s (and y = 0), so the step is fully allocated, then z; —z;_; €

1
[,).

Since we want the auction to set prices equal to the “costs” of the final units
it supplies, and u?— is the auctioneer’s cost of supplying a unit of good j (or
higher) instead of good j — 1, it follows that the difference between the prices
the auction sets for goods j and j — 1 should be z; — z;_1.

So the price of good j is just z;, where this is uniquely defined. As before,
we will select the lowest possible values {z;} where these are non-unique. We
discuss this issue further below.

Example 1. If pui =5, st = 2; u2 =10, s = 2; p3 = 15, s3 > 0; and all bids
are for single units of good 1 then:
if the only bids are 12,4, 4, the price is z; = 5 (yi = 1);
if the only bids are 12,11, 4, then z; € [5,10], and the price is 5 (y} =)
if the only bids are 12,11,8, then z; € [8,10], and the price is 8 (yi =
if the only bids are 12,11,11, the price is 23 = 10 (y1 =2, vy} = 1).

Example 2. If, also, u = 0, si = 1; u3 = 50, s > 0; and there are additional
bids for single units of good 2 then:

if the additional bids on good 2 are 30, 20, then z5 € [20,30], and the price
(on good 2) is 20 (ys = 1).

In this case, if also

the good-1 bids are 12,4,4, then 2z, € [5,10], and the price is 5 (y; = 2);

the good-1 bids are 12,11, 4, the price is z; = 10 (yi =2, y? = 1);

the good-1 bids are 12,11, 8, the price is z; = 10 (y =2, ¥ = 1);

141n particular, if l‘l >0 then every consistency constraint binds—CC 4 holds uncondition-
ally. More generally, if any ,u > 0 then CC 4 holds unconditionally for all j/ > j.

15We assume here “the price” is the lowest feasible z, as discussed above. (Note that when
we generalise to TQSS issues, the price might actually be a different value of z from the
feasible interval.)

the good-1 bids are 12,11,11, then 2; € [10,11], and the price is 10 (y; =
2, yi =2).

Example 3. If the bid of 20 on good 2 was actually paired with the highest bid
(of 12) on good 1, this would make no difference to the prices on good 1, but
would yield prices of good 2 of 13,18, 18,18, respectively (since the bid would
have obtained surplus of 7, 2,2, 2, respectively, on its pair) and, correspondingly,
zo € [13,30] in the first case, and zo € [18, 30] in the remaining three cases. (The
set of feasible z; would be unaffected, but the feasible sets of z; and z9 would
now be related—a higher z; requires a higher zo to prevent the paired bidder
preferring good 2.)

Example 4. If, instead, the bid of 20 on good 2 had been paired with the
second-highest bid (4,11, 11,11) on good 1, this would make no difference to the
prices on good 1, but would yield prices of good 2 of 20, 19,19, 19, respectively
(since the bid would have obtained surplus of 0,1, 1, 1, respectively, on its pair).

Example 5. If instead p} = 12, but the bid of 20 on good 2 was not paired,
this would make no difference to the prices on good 1, but would yield prices
of good 2 of 20,22,22, 22, respectively (that is, the latter three prices are the
price of good 1 plus ps) and, correspondingly, 2o € [20,30] in the first case, and
z9 € [22,30] in the remaining three cases.

If 43 = 12, but the bid of 20 on good 2 was paired with the highest bid (of
12) on good 1, this would make no difference to the prices on good 1, but would
yield prices of good 2 of 17,22,22,22, respectively (that is, since the paired
bidder makes surplus on good-1 in the first case, all the good-2 prices are the
price of good 1 plus p) and, correspondingly, 2o € [17,30] in the first case, and
z9 € [22,30] in the remaining three cases. (But if, instead, the bid of 20 on
good 2 had been paired with the second-highest bid (4,11,11,11) on good 1,
the prices of good 2 would again be 20, 22,22, 22, respectively, since the paired
bidder would make no surplus on good-1 in the first case.)

2.2 Characterisation of the solution'¢

)

We have thus derived “characteristic conditions”:
CC 1. Zj x} < k; Vi.
CC 2. yj <] Vg¥j.
CC 3. Zi,jfgj xé, < Zq y?. (V)
CC 4. if zj > 0 then Y=, o xh = > yi. (V))

CC 5. If v} — z; < maxji»;{v}, — 2,0} then 2 = 0 (Vivy).

16This section isn’t needed for understanding our program, but it shows the program solves
the economic problem we want to solve.

10

CC 6. If max;{v} — z;} > 0 then > xh = k' (Vivy).
CC 7. If pf < zj — zj—1 then yi = s§ (Vj; let 29 =0).
CC 8. If pf > zj — zj—1 then yi = 0 (Vj; let 20 =0).

We now show that these conditions, together with non-negativity of all vari-
ables, are necessary and sufficient both for a solution to the linear programme
and a competitive equilibrium in which the {z;} are the prices.

Proposition 2.1. The following are equivalent:

1. xz, y? > 0 are a solution to the primal problem, with shadow prices z; > 0
on the good j consistency constraints.

2. x}y?, zj > 0 satisfy the “characteristic conditions” above.

3. If the bids and RSSs represent agents’ actual preferences, then prices z;
support a competitive equilibrium, with allocation xé to bid i and), a?;

units of good j sold. Lety] = min {s?, max {0, (ZZ i x;} =D y<q y?/) }}

Proof. 1=-2 follows from the previous discussion.

2=-3. First consider a bid i: if CC 5 holds on every good, every good is too
expensive for the bid, so nothing is allocated to bid 7. If any goods would give
the bid strictly positive surplus, then the total quantity bid for is received (CC
6), and nothing goes to goods that are not surplus-maximising (CC 5 again)
so only surplus-maximising goods are received. Finally no more than the total
quantity bid for is ever received (CC 1).

Now consider the seller: if yJ > 0 then CC 8= z; > zj_1 +pj = z; > pf.
So the seller only sells any units of any good j for which z; = 0 on a step
for which ,ug = 0. On the other hand, for goods j such that z; > 0, CC
4= 3 s k=37, i, that is, the total quantity of goods > j sold is)°_ yy.
And CC 2 and CC 7-CC 8 imply that the coordinates (Zq yg, zj —zj—1) all lie
on the curve shown in Figure 1, which curve defines the seller’s preferences.

So every agent receives an allocation that maximises its surplus at the prices
Zj-

3=1 It is a standard that a competitive equilibrium is Pareto efficient, and
so maximises the objective function. So :c; form part of a solution to the linear
programme.

For goods j with z; > 0, the y? are part of a solution to the linear programme,
by CC 4 (indeed these are the unique y}l that are part of a solution). If z; = 0,
then the seller is indifferent about selling extra units of this good, so it must be
that yf = 0 for ¢ > 1 and that pj = 0, in which case any y; < s} is part of a
solution to the linear programme.

If the z; are equilibrium prices, then being able to allocate an additional unit
of good j at no cost (that is, relaxing the good j consistency constraint) increases
total surplus by at most z;, since no agent strictly wants to buy an additional

11

unit at this price. Conversely, removing such a unit (that is, tightening the good
J consistency constraint) decreases total surplus by at least z;, since no agent
strictly wants to sell at this price. So the z; are shadow prices on the good j
consistency constraints in a solution to the linear programme. O

Note that we could also show 1=-3 directly, since it is standard an allocation
that maximises the objective is Pareto efficient, and so (by the second fundamen-
tal theory of welfare economics) can be achieved as a competitive equilibrium.
So it then suffices to show that the shadow prices z; support this allocation.
But our 1=-2=3=-1 proof structure also shows the equivalence of 1 and 3 with
the “characteristic conditions” CC 1-CC 8, which is useful later.

2.3 Non-commensurable quantities to avoid ambiguity in
prices

The solution of the linear program does not necessarily imply a unique set
of prices. As we discussed above, and illustrated in the examples, we want
to choose the lowest prices consistent with the solution. (The structure of
the problem — the fact that all bids, and supply functions, express substitutes
preferences— means “the lowest prices” is well defined—see Note 3.) In fact, the
set of prices will typically not be unique if the solution involves the quantity of
a good exactly filling all the steps on which it is allocated, without the need
to ration any of the bids to which that good is allocated. Since the program
will simply choose the first solution it reaches, it is best to slightly ”tweak” the
problem so that the set of prices we want is the unique set consistent with the
solution, and therefore the set that the program will report.

We can do this by slightly altering the length of the steps, so that they
can never exactly “fit” any set of bids. Since all bids, and all steps of the
supply functions are integer quantities, this is straightforward—"tweaking” the
supply curves by adding (N + 1 — j)n to s;, where 0 < 1 < ﬁ, guarantees
that the z; are all uniquely determined. And where this “tweaking” resolves
ambiguities, it always selects the lowest z;. Moreover, slightly increasing the
length of the initial step on each good in this way will only slightly change the
optimal allocations of goods to bids, which can be removed by simply rounding
to the nearest integer.'”

We can show this by using the fact that the incommensurability of the steps
both between different goods and with the bids means that, for any good, either
a bid is rationed, or a step is not fully used on either this or the next “higher”
good.

If a bid is rationed, either part of it is unfilled, in which case the price of
the good must equal the price bid (so that the bidder is indifferent about being

17Note that the quantity changes need not all be increases. For example, if there is a paired
bid in which both parts are exactly accepted, and must be accepted in definite proportions,
this might shift the allocation from one to the other—e.g., if there is just one bid for 10 at
prices (3,4), pui =0, s} = 5; p? =2, s2 = 10; pd = 0,s3 = 15, the untweaked solution is to
allocate quantities (5,5) at prices (1,2), but a tweaked solution is to allocate (5+n,5 —n) at
the same prices.

12

rationed), or (if the bid is a “paired” bid) part of it may be filled on another good
or goods, in which case bidder-indifference fixes the price-difference(s) between
the goods.

If a step is not fully used, then “seller-indifference” fixes the price-difference(s)
between the goods (that is, the marginal-cost difference, and hence the price-
difference, between two adjacent goods is well-defined). So either the good’s
price is determined directly, or it is “tied” to another good’s price, which can
itself either be determined directly, or “tied” to yet another good’s price, and
so on; a final price is pinned down by either buyer- or seller-indifference, since
the incommensurabilities mean that the total allocation cannot both comprise
only complete bids and comprise only complete steps.

(Absent paired bids, the goods whose prices are “tied together” are all con-
secutive, but a paired bid can pin a good’s price to any other good’s price, so
that the chains of prices formed need not be of consecutive goods.)

All the above is fairly straightforward [see Appendix 7.1 and 7.2 for details]
provided there are sales on all goods.

Small dummy bids to avoid ambiguity in prices of unsold goods

If there are some unsold goods, their prices are not necessarily pinned down
by the above—but we may still care about the prices we report on the unsold
goods, especially if we use a TQSS (see Section 3 below) that might depend
on these prices. Moreover, in this exceptional case we don’t necessarily want
to report the lowest competitive equilibrium price—we probably do not want
to report prices lower than the lowest feasible sale prices, that is, prices that
correspond to "reserve prices”. (For example, with a single bid of 5 for 1 unit
of a good whose supply curve has a single step at price 8, the competitive
equilibrium is any p € [5,8]. We probably want to report p = 8.) To do this
we include a small dummy bid of size 7/2, at a high enough price that it is
guaranteed to win, on every good. (So the first step of the jth supply curve has
(n+1—7)n/2 in volume used by these bids, halving the “tweaks” we introduced
above, without changing their effect; as with the ”tweaks” we introduced above,
these dummy bids, and other tweaks are removed after solving for the prices,
and before the rationing procedure we discuss below.)

Alternative Pricing Rules for cases of unsold goods
The following example discusses alternative pricing rules that we might wish
to implement when some goods are unsold.

Example 6. A seller has one unit for sale. The seller has reserve prices 5 and 7
for goods 1 and 2, respectively (i.e., the first step on the supply curve for good
2 is of height 2].There is a bid of 8 on good 1, and bids of 20 and 14 on good 2
(all for a single unit).

Clearly a single unit of good 2 is sold at price 14. If we simply program
supply curves length 1 & 1, the price on good 1 will be 8. This is arguably the
”correct” price to report. If the seller had any ability to sell additional good 1
(and the cost of good 2 jumps to 13 or more beyond one unit), the price would
be 8.

13

However, if the problem is better understood as one in which the seller values
good 2 at 2 more than good 1, but just wishes to sell only a single unit on this
occasion, then the ”correct” price to report for good 1 is probably 12. We can
achieve this outcome by extending the length of the supply curves on good 2
to, e.g. length 2.

2.4 Non-commensurable prices to avoid ambiguity in quan
tities

Just as the solution of the linear programme does not necessarily imply a
unique set of prices, nor need the optimal quantity vector be unique, since the
locally flat supply curves mean the objective function may be indifferent between
allocating or holding back units of goods, and between allocating on any one of
several goods that are being rationed. As before, since the program will simply
report the first optimum it comes to, we “tweak” the bids so that the outcome
is unique and corresponds to our preferred outcome. (Again, the only possible
distortion to the optimal set of prices can be removed by rounding the prices to
the nearest integer.)

We assume the auctioneer has lexicographic preferences among solutions
maximising the objective function, first to allocate as many units in total as
possible and then, subject to this, to allocate units to goods in a fixed order of
priority. (This order might be higher-quality goods first, but could be completely
different from the ”quality” order on goods.)

So we proceed by ”tweaking” the bids by adding €(% 1 to all bids on the
Jjth good, in which the a; € {1, ..., N }are such that j is the a;th preference good
(with no ”ties” between goods), and ¢ < 1/2 (assuming all bids are integers,

14

e.g., whole numbers of basis points).!® That is, the objective function becomes

max | (0] + @)l = 3 S
7,9

N

with the constraints being unchanged.

The solution x!,...,xM, {y?} to this programme, with the shadow prices
rounded to the nearest integer, gives us the prices and the values of), 1:3 for
all j, that we want. It is still necessary, of course, to specify the rationing among
marginally accepted bids (i.e., to specify how the total quantities of each good,
> x?, are to be allocated across the winning bids).

3 The Total Quantity Supply Schedule (“TQSS”)

The previous arguments have shown that “tweaks” guarantee an unique
price and quantity solution (up to fairly allocating between rationed bidders)

18The reason for choosing (@ *1) is that a good’s price may end up being tweaked by the
sum of the tweaks on other goods. (e.g., with 1 unit of Y and 2 units of X to be sold, assume
A bids for 2 at (2,2) and B bids for 2 at (1,0). Equilibrium is at (1,1) with A being rationed
between Y and X, and B being rationed between X and 0. If we tweak A’s bid to (2.1,2),
equilibrium shifts to (1,0.9).) [Note also, that tweaking bids on good X up sends good Y’s
price down—so to remove the tweaks, we must round to the nearest integer (up or down).]

Using tweaks of this form means that solving our linear program for large numbers of goods
may require increased arithmetic precision, as this approach requires at least one binary digit
of precision per good (plus one) to accurately represent tweaked prices—it is possible to solve
the LP in higher-precision or arbitrary-precision arithmetic using the techniques described in,
e.g., ”Exact solutions to linear programming problems” (Applegate et al., 2007). Alternatively
we can ”tweak” a single good at a time using a method analogous to that used in Baldwin
et al (fortcoming); this avoids the need for increased arithmetic precision, but is considerably
more cumbersome.

In section 6’s extension to ”asymmetric paired bids”, a more careful choice of ¢ is needed
to guarantee uniqueness of the prices and the values of), x% for all j.

On the other hand, absent ”paired bids”, it suffices to "tweak” the bids by adding aje to
all bids on the jth good, in which the a; € {1,..., N} are such that j is the (N 4+ 1 — a;)th
preference good (so the good we most prefer to allocate to has a; = NN, and the good we
allocate to last has a; = 1), and € < ﬁ (assuming all bids are integers), and we than always
round down to the nearest integer—see the Appendix.

[With ”paired bids”, we can construct counterexamples to uniqueness of {y;?} and), zt
for all j, if we simply "tweak” the bids by adding aje to all bids on the jth good, Wiﬂzl
aj € {1,..., N} are such that j is the (N 41 — a;)th preference good. For example, let a; = j;
let there be bids of (a,0,¢,0) and (0,b,0,d), each for a single unit; let the seller’s supply
functions both (i) exhibit indifference between selling a unit of good 1 at price A and selling
a unit of good 2 at price B, and also (ii) exhibit indifference between selling a unit of good
3 at price C and selling a unit of good 4 at price D. If a > A, b> B, ¢ > C,d > D and
(a—A)+(d— D) = (b— B)+ (c — C), there is a solution in which the quantities sold are
(1,0,0,1), and also a solution in which the quantities sold are (0,1,1,0), both with and without
the tweaks. (E.g., sT = si = 2;8% =st=Lpl=pul= ,ué = pl = 1; bids: 1 at (2,0,103,0)
and 1 at (0,3,0,104). So goods cost sellerl,2,3,4 respectively, and the seller can sell at most 1
of goods 3 and 4. So the seller will either sell goods 243 or goods 1+4, and with tweaks of
1/10, 2/10, 3/10, 4/10, both sale options yield a total tweak of 5/10.)]

15

when the ”auction size”, > q sl = R, is fixed. It follows that the competitive
equilibrium is also unique when R is fixed.

In fact, the ”auction size”, R, will also be determined by the bidding. More-
over, as we vary R, we will scale all the s{ in proportion to R, and scale all
the s?, 7 > 1, in proportion to AR + (1 = MR, for some minimum size ﬁ, and
A € [0,1]. (We thus encompass the cases (i) for j > 1 leave all the s7 unaffected,
and (ii) scale all the sJ in proportion to R.) Scaling in this way guarantees that
all goods’ prices, {z;}, are weakly decreasing in R-this is a special case of the
following result:

Proposition: Multiplying all the s? by B;, where 8; > B;41 for all j < N,
and Sy > 1, weakly reduces all the prices, {z;}.

Proof: Let the total quantity of good j allocated to the bidders at a solution
to our program for some R, {s%}, be X; = 37, «%, and the prices be {z;}. Let
Y; = >, 4], so in the solution Yj = X; + X; 11 + ..+ Xn. (We noted above
that j = 1 is an exception to the rule that compatibility constraints bind in
the solution—but we can think of the Y; that satisfies this equality as being the
“correct” Y7, so this is w.l.o.g.). So X; =Y, —Yj44 for j < N, and Xy = Yn.
Now consider multiplying all the s;l- by B3;, where 3; > 3,11 for all 7 < N, and
Bn > 1. At the prices, {z;}, of the initial solution, the supply conditions would

be satisfied by quantities {)Z'J} that satisfy §;Y; =)Z'j +)A(:j+1 + ..+ X’N, SO
jzj = ﬁ]Y} — ﬁj+1Y}+1 fOI'j < N, and)}N = BNYN That is, they would be
satisfied by {)N(J} such that X; — X; = (8; — 1)Y; — (Bj41 — 1)Yj41 > 0 for

j<N,and Xy — Xy = (BN —1)Yn. So, since B; > 41 and Y; > Y11, excess
supply,)~(j — Xj, is weakly positive for every good j. So since both the new
supply curves and bids represent ordinary substitute preferences, it follows from
Theorem 23 of Milgrom and Strulovici (2009) that there exists an equilibrium
at which all prices are weakly lower than {z;}. 0w

Since all goods’ prices, {z;}, are weakly decreasing in R, a unique equi-
librium R can be determined by the program using a Total Quantity Supply
Schedule ("TQSS”), 7(21, .., 2n), if T is a continuous strictly increasing func-
tion of all the {z;}. That is, we can find the unique R which yields {z;} such
that 7(z1, ..., 2v) = R by simply using a ”bisection method”, running the linear

197¢ is straightforward that the argument extends to any weakly increasing supply curves
(since the argument doesn’t rely in any way on the step form of supply curves we have
imposed).

The argument also extends to the more general programs of Sections 5. For program (2)
(which is more general than program (1)), using the obvious notation, Y; ; = X ; + X1, +
ot Xy foralll>1,and Y11 = X111 + Zj,l>1 X1 =X11+ Zl,l>1 Y1, (more precisely,
Y7,1 can be thought of as equal to this), in the initial solution. So, after rescaling all the S;Z',l

by f;.1, we have weakly excess supply of good j,1 at the initial prices (i.e.,)Z'j,l - X1 >0),
if (85,0 — Y0 — (Bj410 — Y410 > 0forall I > 1, 5 < Ny, and (Bn, 1 — 1)YnN;;1 > 0
for all I > 1, and (81,1 — 1)Y1,1 — 3> ;51 (81, — 1)Y1,; > 0. So sufficient conditions for our
monotonicity result are that 3;; > 81, for alll > 1, j < Nj, and By, > 1 for all | > 1,
and B1,1 > max;{B1,} (since Y11 > 3>7,_; Y1).

It also extends to permitting asymmetric paired bids—see Section 6 (since the argument
works for ordinary as well as strong substitutes).

16

programme for sufficient fixed R to achieve any desired accuracy.?’ We will
program a flexible choice of 7, subject to either 7(z1,...,z5) = 7(21 + ... + 2n),
or 7(z1,...,2n) = 7(z;) for some single j.

It may help to think of graphs of 7 and R (on the y-axis), and ¢ (on the
x-axis), where ¥(z1,...,25) = (z1+ ...+ 2n) /N if 7(21, ..., 28) = T(21+ ...+ 2n),
and (21, ..., 25) = z; if 7(21, ..., 25) = T(%;). Solving the program obtains the
{z;}, and hence obtains ¢ as a downward-sloping function of R, and the TQSS
specifies 7 as an upward-sloping function of 1.

We will draw these graphs (approximating 1(R) if drawing the entire graph
of ¥(R) accurately is computationally intensive).

TQSS tweaking

Although all supply curve steps will be specified in integers, scaling them
as above may mean they are no longer integers. So tweaking the step lengths
could recreate integers. To avoid this (small) risk, we round up steps up to
the nearest integer after the scaling but before the ”n—tweaking” we described
above. (More precisely if, e.g., step lengths on a supply curve are now 1.2, 3.6,
3.6, 2.4, yielding partial sums are 1.2, 4.8, 8.4, 10.8, we round these up to 2, 5,
9, 11, and thus round the step lengths to 2, 3, 4, 2.)

Alternative TQSS
Section 5 describes an alternative form of TQSS.

4 Rationing

We assume we have done the earlier tweaks, so that we have now determined
a unique price and quantity for each good.

So if and when we run the linear programme again to sort out the rationing,
we can use a simplified version which fixes the the total quantity of each good
to be allocated at the quantity we have determined. That is, we now replace
our program with the program in Section 1.2, with the amount of the jth good
to be allocated being fixed at R; (and dispensing with the supply functions

20 An ”intersection” is guaranteed by choosing a TQSS covering a sufficiently wide range of
{z;} for relevant R. (There may be an interval of R yielding the same set of {z;}).

If T is discontinuous (but increasing), there may be an interval of R at which R equals the
TQSS.

One might prefer to use an alternative form of TQSS, and/or to permit a different depen-
dence of the s on R. If it remains guaranteed that the {z;}, are decreasing in R,and the
TQSS is increasing in the {z;}, we can use ”bisection” to find a (unique) equilibrium. If the
monotonicity conditions are not satisfied, but we are not too fussed about achieving exact
equality between R and the TQSS, we might run the linear programme for a finite number
of fixed R € [R, R] and choose either the largest of these Rs which is no more than the value
of the TQSS that using that R yields, or the smallest of these Rs which is no less than its
corresponding value of the TQSS. For example, the monotonicity conditions are not satisfied
by a TQSS that is a function of prices weighted by the quantities allocated at them. (E.g.,
with just two goods, increasing R might result only in selling more of the higher-priced good
to a single bid that is indifferent, and so rationed, between that good and not being allocated,
while neither price changes, thus increasing the quantity-weighted average price.)

17

and the {y} etc.). This not only makes for a more efficient program, but also,
importantly, means we can use larger ”tweaks” for rationing purposes than we
would otherwise be able to use without interfering with our solution.?!

We need to determine how to divide the quantity allocated to a good between
the different bids:

For example, assume the prices on goods 1 and 2 are 11 and 30, respectively,
and we can only fill 2 of m > 2 bids of 11 (for single units of good 1), and 1 of
n > 1 bids of 30 (for single units of good 2).22

We will call a bid "multiply-marginal” if it is a ”paired” bid in which more
than one good is being rationed (where "reject” is not counted as a ”good”).
(So, in the above example, a bid of 11 on good 1 and 30 on good 2 is ”multiply-
marginal”; a bid of 11 on good 1 and 20 on good 2 is not.) Note there may be
multiply-marginal bids, where the marginal parts are (all) above the allocation
prices. For example, a bid of 21 on good 1 and 40 on good 2 is "multiply-
marginal”. So we have to search through all the multiply-marginal bids—we can’t
just look at bids which actually have values of 30 and 11.

In our basic problem, a bid can’t be marginal and above the allocation prices
unless the bid is ”multiply-marginal”.?3

We will focus on the case where there are at least some ”multiply-marginal”
bids. (So we can’t simply use the multiply-marginal bid in both places. E.g., if
m = 3 and n = 2, we would be trying to allocate 2/3 of an 11 and 1/2 of a 30
which is too much.)

4.1 Objectives

1. Lexicographic preferences for allocating more rather than less.

We argue, of course, that if bidders bid ”honestly” then they should be
indifferent about whether or not they are allocated any marginal bid, and that
they should bid ”honestly” if the number of bidders is large. But with any finite
number of bidders, they should rationally shave their bids below their valuations,
so will strictly prefer to be allocated rather than not allocated. (Roughly, the
more any bidder bids for relative to total expected demand the more it should
shave its bid.) Moreover, if we do a discriminatory-pricing version of the auction,

21Running the simpler programme won’t ever lead to an essentially different set of prices,
because our rationing will yield a unique “highest-value allocation” of the goods to the bidders,
and it can’t be that different sets of prices would lead to different highest-value allocations
(because the efficient allocation across bidders can’t depend on prices which are, of course,
only a transfer). That is, it may be that prices are non-unique, again, but the prices we
originally found will be consistent with any solution of the simpler programme. And since
we want the minimal possible prices, we will simply go back and use the prices we originally
found, after having sorted out the rationing.

22This example is similar to the last (4th) case of example (2) above. It had pi =5, s1 = 2;
,u% = 10, s% =2 u? = 15; ,u% =0, s% =1 ,u% = 50; bids for single units of good 1 were
12,11, 11, and for single units of good 2 were 30,20. Modify this so that there are m bids of
11, and n bids of 30.

23 A single (unpaired) bid above the allocation price can be marginal if, as in extensions of
the model we discuss in section 6 below, we permit additional constraints, such as a constraint
on the total quantity a bidder can buy.

18

bidders will have strong preferences that their marginal bids be allocated rather
than unallocated.

2. Not arbitrary—although we could argue arbitrariness is random, it would
lead to some awkwardness in the real world if it really depends upon the fine
details of the programme and the way bids are input.

3. Fairness between bids. We interpret this to mean that bids should,
ceteris paribus, be rationed in proportion to their size. (That is, if one bid that
is twice the quantity of another, should receive twice the allocation. Otherwise
participants may have incentive to subdivide large bids into smaller ones.) Note
we are not trying to allocate bids to bidders, and then do fairness between
bidders.

4. Favor multiply-marginal bids.?* (We want to encourage paired bids, since
they create more competition between bidders on different goods (they link the
otherwise-separate auctions) and make collusion harder. But we can’t favour all
paired bids, because bidders could then put in rubbish as one part of the bid,
in the knowledge that that part will never be chosen, and they get a benefit on
the part that is serious.)

Possibly favour triply-marginal (in which 3 components are marginal) over
doubly-marginal etc.
Possibly favour higher bidders among multiply-marginal [see later example].

5. Not divide bids into little bits (especially multiply-marginal bids) [this
isn’t necessarily consistent with ”fairness”, of course]

6. Not take too much computing time (so as not to limit number of bids and
goods etc.). Especially if we are using a TQSS this may not be such an issue,
since we only have to workout the rationing between bids at the very final stage
after we have fixed the final price and quantity vectors

4.2 Strategy

There are a variety of alternatives approaches, of which the following seems
most promising (alternatives A,B, and C are in Appendix 7.5):

D. We identify all marginal bids or parts of bids. We then tweak them to
"smear them out” as follows. Choose § < 1/N. Convert each marginal bid, or

24Tf we do this, it will probably mean (and so we will need to explain to bidders)

(i) that a paired bid both parts of which are marginal has a higher chance of being filled,
since it may be the only one allocated a good, and others may see that they got none of the
good even though they bid the price at which the good was allocated,

BUT (ii) if a paired bidder has lexicographic preferences between the different sides of its
pair, it may feel it got the wrong side of its bid, and was hurt by making a paired bid. The
reason is that the auctioneer will fill bids in the order the auctioneer wants, even though both
sides of the pair might have been allocated in full in the end. So the paired bidder may be
the only one allocated his less-preferred good.

19

part of a bid, for k; units at value v} to a demand that is linear and is for k;
units at value v;'v, decreasing to 0 units at value v; + 70 (so the different goods
j=1,..., N are tweaked by different amounts). Now approximate these linear
demands as finely as desired by a set of "little steps”, and then run the linear
programme. This will be "efficient” (up to the size of "little step”), and it is
completely fair among bidders.?”

We might save computing timing by doing this in several phases. We start
with "medium-size steps”. Having identified an approximate solution, we turn
the relevant medium-size steps into ”little steps” and run the program again....

We should go to some appropriate minimum size, then check that all identical
bids are treated identically, by rounding final outcomes down if necessary.2

Variants of D

(i) We just do D for multiply-marginal bids. We then go through the goods in
turn, rationing all the other marginal bids equally (which is easy since they are
all ”singly-marginal”). This both favours multiply-marginal bids and should save
computing timing. Indeed it is likely to be fast since the number of multiply-
marginal bids is likely to be tiny.

25 The reason this achieves an (essentially) unique solution is that we are breaking up
marginal bids into lots of (arbitrarily) tiny bids which cannot be collinear with any ”facet” (line
of prices along which the original bid is indifferent). So only a finite number of (arbitrarily)
tiny bids can end up marginal.

(These tweaks cannot, of course, bias which goods are allocated because that is pre-
determined by the e tweaks. The fact higher-indexed goods are given higher values is compen-
sated by the fact that we will [in effect] round prices back down [by going back to the original
prices].)

These tweaks are "fair” in, e.g., examples such as (in 2 dimensions): (1) if there is a
marginal paired bid for 10 on each of the horizontal, vertical, and diagonal indifference lines
through the equilibrium prices [e.g. the bids are (0,30), (21,40), and (11,0), with equilibrium
prices (11,30)], and we must sell 10 of each of the 2 goods [sell 20 in all, so reject 10] this
takes the ”top half ”of each of the 3 ”linearised bids” to get the maximum value; (2) if there
are two (multiply-)marginal paireds bid for 10 on the diagonal indifference line through the
equilibrium prices [e.g. the bids are (21,40), and (31,50), with equilibrium prices (11,30)], and
we must sell 10 of each of the 2 goods [sell 20 in all, so reject 0] this takes the "top half ”of
each of the 2 ”linearised bids” to get the maximum value.

These tweaks do, however, mean higher-indexed goods are distributed “more equally”
among the multiply-marginal bids, in asymmetric problems. (The reason is that it is
most ”profitable” to allocate to the favorably-tweaked parts of the bids on higher-indexed
goods, even if that requires allocating to some less favorably-tweaked parts of bids on lower-
indexed goods.) If, for example, we need to allocate 2 apples and 1 banana to bids 1 and
2, and these bids must receive 1 unit and 2 units, respectively, then if 1 receives = and
1 — z units of A and B, respectively, 2 must receive 2 — z and z units of A and B, re-
spectively. If we tweak A and B by 4wd and 4vd, respectively, the ”additional profit” is
[x(4—x)+(2—x)(2+z)|wd+[(1—2)(2+2x) +x(4—2x)|vd = [2+2z—22]2wé+[1+22 —2x2]204.
So (since the LP chooses = to maximise the "additional profit”), if w/v — oo, z — 1 (i.e,
apples equally shared, and all bananas allocated to bid 2), if w/v — 0, * — 1/2 (i.e., bananas
equally shared, and apples disproportionately allocated to bid 2), and if w =~ v, x &~ 2/3 (i.e.,
apples and bananas shared in & the same ratio, 1:2, between the two bids).

26 We would not necessarily deem bids to be identical if the bidders who made them (i)
were under additional constraints, such as constraints on the total quantity a bidder can buy,
and also (ii) had made different sets of bids. Nor do we assume bids are identical in any sense,
if one is a multiple of another (though in an ideal world it might be natural to argue, e.g.,
that a bid that is exactly twice another bid should have exactly twice the allocation).

20

(Again, we check that all identical bids are treated identically, by rounding
down if necessary.?")

(ii) We could do (i) but give greater preference to triply-marginal, etc.,
by tweaking their demand for any good j by an amount between j§ and 259
(26 < 1/N).

(iii) We could do (i) but also allow paired bidders to specify their own lex-
icographic preferences about where they are used. E.g., each bid can label the
goods in any order j/ = 1,..., N, and have good j’ tweaked by an amount be-
tween j'§ and (j' 4 1)d in the case that they turn out to be multiply-marginal
(6 <1/N).

At the time of writing, the web application is using variant D(i), and "no
rationing” (simply picking the first solution the program comes to) as an alter-
native option, but the command line program also allows D. (The command line
program also allows the option to randomly re-order bids and bidders on input,
thus ensuring a kind of equity in the "no rationing” case.) It is not hard to edit
the program to do other forms of rationing.

None of these rationing methods (or probably any other) seems
ideal in every possible circumstance. For detailed discussion of the
behaviour of different forms of rationing (especially the main variant,
D(i), used by our programs), including in the extensions discussed in
section 6, please write to the authors.

5 Extension to ”Horizontal” as well as Vertical
Goods

We have assumed goods j = 1,..., N are ordered ”vertically”, with higher-
numbered goods always worth (weakly) more, and priced (weakly) higher than
lower-numbered goods.

We can also consider goods that are more symmetric, or ”horizontal”.

Both alternatives are useful.

(1) below does both ”vertical” and ”horizontal” at the same time: we have
aset | = 1,...,L of "columns” of goods. FEach column is a vertical list of
j=1,...,N; goods. But the columns are "horizontal” in relation to each other.

(2) below generalises further, by adding one further "base” good that is
below all of the ”columns”. This might cover a particular case of interest—the
special case in which each column is of length one, and with a ”base good” is
below all those columns.

We could generalise further still the kinds of relationships between goods we
permit.

Tweaking in the general case

27See note 26.

21

We have not thought through in detail the best tweaking strategy. We doubt
there are any issues in principle (the proofs may be more involved) but this may
limit the number of goods or bids we can permit without computational (or
run-time) issues. So we do price-tweaks as usual-a different tweak for every
good. Quantity-tweaks are the natural generalisation of before. We tweak the
first step of every supply curve by (n+ sum of tweaks on all goods immediately
above the current good). Thus with n goods in all, the sum of all the additional
quantities that the tweaks make available to goods at any price vector is (as
before) nn, and we set ny = 1/4 (if all bids, step sizes, etc., are in integers).

Variables
x;l allocation of bid ¢ to good j of group ! (bid size k;, values v;:,l)
qu-,l allocation to gth step of goods j and above of group | = 1,..., L (step
length s?,, height 4)
We assume that uf, > 0, and pf, is strictly increasing in ¢ for all j, 1.28

Program (1)

7 7 q q
max § :vj,lxj,l - E:“j,lyj,l

(SRR i,3,1 J,q50

such that (with the variables on the right-hand side being the corresponding
shadow values)

> a:;l < k Vi b;, constraint on size of bids
yi, < si, Vg, ViV uf;, constraint on length of steps

IR OO IED DY
DTN g YN

And all variables non-negative.

0 1< <N -1Vl =z, good j,l consistency constraint

IAIA

0) Zn, 1, good Ny, 1 consistency constraint

The problem specified in the earlier sections of the paper is the case L = 1.
The (basic version) of a "horizontal” problem is the case with N; = 1,VI.2%
(If it is also without paired bids, then there is only one non-zero v;, for each

j-)
If we work with a TQSS, we will let R =3"_;s{ ;.

Program (1*) [Alternative version of TQSS]

28In both programs (1) and (2), it would not be hard to allow some ugl < 0, and perhaps
not always increasing in q. We may explore these things. ,

29Cases with N; > 1 corresponds to some variations of a ”"horizontal” problem that involves
”tying” reserve prices. We may develop programs (1) and (2) further to correspond to other
cases of tying.

22

An alternative way to program a variable total quantity, is to not change any
step sizes, but instead insert the additional constraint 0l y% L < R.3% A simple
approach is to relax the constraint as we increase R, and look for consistency
with the TQSS as usual. (That is, as before, we would run the linear programme
for a sufficient number of of different values of R to find the R which yields {z;}
such that 7(21,...,z2xv) = R to the desired accuracy; >, s{; will now be the
maximum value of R that we use.) We will use a more elegant approach of
adding an additional constraint into the LP.

Note that if we use this alternative form of TQSS, we need an additional
tweak on (each value of) R which should dominate the effects of the other tweaks,
so we simply add 2nn to R. Since the "dummy bids” are automatically sold and
thus come out of the ”allocation” to R, we are in effect tweaking the allowable
total sales by just 3nn/2 = 3/8 < 1/2 so rounding the quantity solutions to the
nearest integer as usual will eliminate the distortion. Otherwise, the fact that R
is left untweaked can vitiate the effect of the other tweaks. (For example, with a
single bid of 8 for 1 unit of a good whose supply curve has a single step at price
5 up to s = 1 unit, the basic tweaked problem has s < 1+ 7, with the intention
of forcing p = 5, but if the TQSS says ¢ < 1, the competitive equilibrium is
any p € [5,8]. “Tweaking” the TQSS to (in effect) ¢ = 1.375 restores p = 5 as
the unique competitive equilibrium price.)(When we implement the TQSS by
adding an additional constraint into the LP, the constraint will be tweaked by
adding 2nn to the first step.)

The ”Normalised TQSS”

In the “horizontal” context, it is natural to specify this kind of TQSS in
terms of the “normalised price”, that is, the auctioneer’s ”marginal surplus”.
More precisely, we define the “normalised price” to be the value to the auctioneer
of the ability to sell an extra unit (of any good), respecting all constraints apart
from the TQSS (so it is the shadow price of a TQSS that restricts the auctioneer
to the current total quantity). The normalised price typically equals the price-
cost margin on every good, that is, the price of any particular good less the value
of the supply curve at the quantity of that good being supplied, but will not
always do so since the program chooses the lowest possible prices on goods when
multiple prices would give the same allocation. (If there were no lumpiness in
bids, so price-cost margins were continuous functions of quantities sold, then the
price-cost margin on every good would equal the normalised price.) As usual
the TQSS has to start at a very low price (we should think of it being zero for
an arbitrarily small quantity) and go up to a high price. Appendix 7.6 gives the

30This form of TQSS is equivalent to using a TQSS in the usual way, after reindexing all
the goods 7,1 — (j + 1),1; then defining additional ”goods” 1,1l that all correspond to "no
sale”, each of which has only a single step of length S({,l = Zq s;l and height “%,l =0, and
inserting singleton ”bids” of sizes equal to the initial lengths of the steps Sl{,l at price 0 on
each of the additional ”goods” 1,1, respectively (with lexicographic preferences to prefer any
sale of a good 7,1 for j > 1 to the sale of any "good” 1,1); and using ”absolute” supply curves
(i-e., for j > 1 leave all the S;,l unaffected, equivalently ”A = 1”7, as we increase R according
to the TQSS).

23

details of how to implement a "normalised TQSS”.

Implementing Alternative Pricing Rules for cases of unsold goods

Reconsider example 6 as a horizontal problem:

As before, a seller has one unit for sale, and reserve prices 5 and 7 for goods
1 and 2, respectively. So the first steps on the two supply curves are now of
height 5 and 7. As before, there is a bid of 8 on good 1, and bids of 20 and 14
on good 2 (all for a single unit).

Clearly a single unit of good 2 is sold at price 14. If we simply program supply
curves length 1 & 1, and use the alternative TQSS to impose a maximum sale
of 1 (at any price) the price on good 1 will be 8. This is arguably the ”correct”
price to report. If the seller had any ability to sell additional good 1, the price
would be 8. (And it corresponds to the "edge” case in which the cost of good
2 jumps to 13 or more beyond one unit.) However, if the problem is better
understood as one in which the seller values good 2 at 2 more than good 1, but
just wishes to sell only a single unit on this occasion, then the ”correct” price
to report for good 1 is probably 12, and, as before, we can achieve this outcome
by extending the length of the supply curves on good 2 to, e.g. length 2.

Program (2) We add a special good (1,1), and all other goods have their
2nd suffix increased by 1.

7 7 q ,4q
max § :”j,l%‘,z - E :ﬂjwj,z

i q
b i 350 jal

such that (with the variables on the right-hand side being the corresponding
shadow values)

gt < ko Vi b;, constraint on size of bids
3175,
yi, < sj, Ve, ViVl uf;, constraint on length of steps
Zx;l - (Zq Yii— 2, y]q-H’l) < 1<j<N—1,Vl>1 zj,, good j,l > 1 consistency constr:
DTN~ g Y < vi>1 ZN,.1, good Np, 1> 1 consistency cons
>t — (Zq Yl — 2 gus1 yil) < 0 21,1, good 1,1 (= good Ny, 1) consistency constrair

And all variables non-negative.

The only differences from (1) are that the 5th constraint is new and sub-
stitutes for the | = 1 case of the 3rd and 4th set of constraints (which now
therefore apply only for [> 1).

[Program (1) is a special case of program (2): good j,1 > 1 of (2) corresponds
to good j,1—1 of (1). Then setting all v} ; =0, uj; = 0, and s1 ; = arbitrarily
large, will mean (2) gives the same solution as (1). (In the solution to (2), an
allocation of all or part of a bid ¢ to xil is equivalent to an allocation to "no
sale”; that is, the allocation of i to x{; + "no sale” in (2) corresponds to the
allocation of ¢ to "no sale” in (1).)]

24

The problem specified in the earlier sections of the paper is the case in which
L = 2, in which what was good 1 before becomes good 1,1 here, and in which
all goods 7 > 1 before become goods j — 1,2 here.

The (basic version) of a ”horizontal” problem is the case with N; = 1,VI,
and all viyl =0, ,“%,1 =0, and 3%,1 = arbitrarily large. (If it is also without
paired bids, then there is only one non-zero U§,1 for each j.)

If we work with a TQSS, we willlet R =3, s{ .

6 Other Extensions/Variants

Not all of these extensions are in the current program, but future development
should be easy.

Note that (unlike in the preceding) some of the below require a concept
of a “bidder” that is separate from the concept of a “bid”. (Of course, our
program anyway keep tracks of who makes which bids at the input stage, for
reporting purposes at the output stage; we could also use this information at the
“rationing” stage of our program.)

Procurement Auctions

[At the time of writing, not implemented in our program.]

Simply the opposite problem of an auctioneer buying goods from bidders
who offer prices at which to sell.

Discriminatory Pricing

[Easy to read off from the program’s results, although not explicitly imple-
mented in the program.]

Without changing the solution mechanism, we let the prices be those that
were actually bid.?!

Non-competitive bids

[At the time of writing, not implemented in our program.]

For the discriminatory pricing case, we would like to also allow non-competitive
bids.

A non-competitive bid for a single good specifies a good and a quantity
of that good, but no price; a non-competitive paired bid specifies the goods
and a quantity, and also the differences in willingnesses to pay for the different
goods. For example, a non-competitive paired bid for one of two goods can be
represented as (NC,NC+x), if the bidder is willing to pay up to x more for the
second good than for the first good. A non-competitive bid is always filled, but

31Just like we ordinarily do discriminatory pricing, we implicitly assume that the highest
bids are the highest value ones, so take the bids (including the selections we make from paired
bids) that give the seller the highest surplus. (We don’t try to guess whether doing something
else might be more efficient.)

25

the price for it is set at the (weighted) average price paid by all other winning
bids on the good which it is allocated.

A maximum size would be imposed on all non-competitive bids, and a limit
would be placed on a number of non-competitive bids that any individual
bidder can make. (We could also insist that “bidders” who make any non-
competitive bids can make only non-competitive bids, and might also restrict
non-competitive bids to singleton (unpaired) bids.)

Introducing non-competitive paired bids (for the discriminatory pricing case)
is a little complex. The issue is that the linear program would choose to allocate
non-competitive paired bids of the form ”(NC,NC+x)” according to the goods’
marginal values (i.e., what uniform prices would be). However, it would then be
natural to re-allocate the non-competitive paired bids to whichever goods were
best for them at the goods’ average prices (i.e., according to the prices that non-
competitive winners would actually be required to pay). This re-allocation of
non-competitive winners might take us off the auctioneer’s supply curves and/or
TQSS. So, with discriminatory pricing, we would probably only permit non-
competitive paired bids if the auctioneer was willing to be sufficiently flexible
about the relationship between prices and quantities (which would likely require
tight limits on the size of the bids).

For our standard uniform pricing case, however, we could easily permit non-
competitive paired bids of the form ”(NC,NC+zx)”, etc., that will always be
filled, and will be filled on good 2 if the price of good 2 exceeds that of good 1
by less than x. (Of course, a bidder can also do this by simply substituting a
sufficiently large value for "NC”, and we will, of course, solve the program by
treating these bids in this way. However, it may aid bidders’ understanding to
offer this option for all bids in the uniform-pricing case.)

Lowest Winning Bid Pricing

[Implemented in the command line program, but not, at the time of writing,
in the web application]

Our basic program does ”true second pricing” (so, for example, if there is
just one bid, and that bid wins, it pays the minimum price that it could have bid
and won, not the actual price bid). By contrast, most real-world uniform-price
auctions are priced at the lowest winner’s bid rather than the highest loser’s. So
for problems in which paired bidding is not permitted, it is natural to consider
(and we will code) the variant in which the price paid by any winning bid on a
good is the lowest price bid on that good by any winner of that good.

Our current implementation should be used with caution if there are any
paired bids, because in this case the linear program might allocate a bidder its
less-preferred side of the pair at the prices the auction chooses. (For example,
a bid of (10,9) would be allocated good 1 if the highest losing prices were (5,5),
but it would prefer to be allocated good 2 if the lowest winning bids turned out
to be (10,6).32)

32This could arise, for example, if there are three bids, each for one unit, at (10,9), (0,6),
and (5,5), and a single unit of each of good 1 and good 2 is to be allocated. The point, of

26

Generalised paired bids

[Implemented)

Our program permits ”generalised paired bids”. Such a bid is specified by
{k;, vl n}’l} and the constraints ;| < £}, Vj, [, apply to it, in addition to the
standard constraint, » i x;’l <k;.

(That is, an ordinary ”paired bid” has m;i’l = k; V4,1 (so the new constraints,

zh < /i;’l, are irrelevant), and the bid selects the single best option out of all
the goods (or no purchase) for the bidder. A ”generalised paired bid” with
/<;§7l = (k;/n) Vj,1 selects the n best options out of all the goods 7,/ (and no
purchase, which option can be chosen up to n times), for allocating (k;/n) units,

for the bid.)

Asymmetric (and Generalised-asymmetric) Paired Bids

[Implemented]

Our program allows bidders to express more general trade-offs than 1-1 be-
tween goods. An asymmetric paired bid i can express indifference between
(1/a%, ;) units of good j" and (1/a’, ;) units of good j”, etc., that is, the bid
specifies a constraint), aé-’lx;’l < k33034

A generalised asymmetric paired bid i specifies constraints of the forms
P a;lx;l < ki and a} ja%, < n;l,Vj,l.Ss

Additional Sellers/Swappers

[At the time of writing, not implemented in our program.]

We could permit bidders to input goods to sell, as well as bids to buy. That
is, a bidder might say that he would like to sell one unit of good 1 if the price
exceeds 98, and two units of good 1 if the price exceeds 100. We would add
those into the supply we have for good 1. This does not preclude a bidder from
making a bid on good 1. (In particular, the bidder might make a ”paired” bid

course, is that (10,6) are not competitive-equilibrium prices.

The highest-feasible competitive-equilibrium prices in this example are (7,6). We could
interpret ”lowest winning prices” as meaning these prices (namely the maximal shadow prices
in the solution of the linear programme). This is another possible pricing rule, but it seems to
have neither the advantage of easy comprehensibility, nor all the advantages of ”true second
pricing”. [In this example, with this form of ”lowest winning prices”, either of the two winners
could gain by bidding ”untruthfully”.]

33Note that if bid i places no value on good 7, we set at l:l, and U%’l =0.

34 For example, if bid i is indifferent among: buying 2 aﬁples at pricé 12; buying 3 bananas
at price 23, and buying nothing at all, the bid’s utility is Maz{2(12—24),3(23 — zp),0}, and
soaly,; =1/2,a, =1/3,k; = 1.

35 Rationing is harder when there are asymmetric (or generalised-asymmetric) paired bids.

First, identifying marginal bids requires care. For example, in the example of Note 34, bid
% is (multiply-)marginal at price (12-26, 23-36) for all 6 > 0.

Second, to ensure uniqueness we need to avoid the ”direction” of any tweak being the same
as that of any tradeoff, which adds complexity since the directions of tradeoffs can be arbitrary
(in the example of Note 34 the tradeoff is 2:3), by contrast with ”ordinary” paired bids for
which tradeoffs are always 1:1. For simplicity, at the time of writing, our implementation just
tweaks (multiply-)marginal bids in the usual way, and accepts the theoretical possibility of
non-uniqueness.

27

on a unit of goods 1 and 2, so that if the bid on 2 is successful, the bidder will
then have swapped a unit of 1 for a unit of 2; if he bid on 2 is not successful, he
will have bought back the unit of good 1 that he started with, unless the price
of 1 was very high.)

If multiple sellers offer supply curves, they can be added horizontally if they
order the goods in the same way. Whether or not the sellers order the goods
in the same way, we can also handle a multiple-seller case by ”unpacking” all
the supply curves as we describe below, and then finding equilibrium when all
the sellers’ supplies, and all the sellers’ and bidders’ demands, are expressed
simultaneously.?6’3” With multiple sellers, the auctioneer (probably one of the
sellers) needs to specify a single TQSS (as a continuously (weakly) increasing
function of all the prices {z;},as usual).3839

Observation related to the above: We have specified our problem as
that of a seller who uses supply curves to determine the quantity of each good
that it will sell. This problem is equivalent to that of a seller who will sell a
pre-determined quantity of each good, but who also makes bids to buy some of
those goods back.*°

For simplicity, we consider the basic program of Section 2.41 Let Y 4 s? = R,
for all j. (This is w.l.o.g., since we can make the final step on each supply curve
arbitrarily large.) So the maximum quantity that can be sold is R units in total
of the N goods. Then our problem is equivalent to there being R units of each of
the N goods available for sale, and the auctioneer buying back between (N —1)R
and N R units by making a bid corresponding to each step of each supply curve.
The bid corresponding to the gth step of the supply curve on good 1 is for s
units at value p{; the bid corresponding to the gth step of the supply curve on
good j > 1 is a "paired bid” for sJ units at value (0,...,0,T, T + 15,0,...,0) with
T arbitrarily large.

36The unpacked approach can represent more general seller preferences than supply func-
tions can represent. (The former allows any strong-substitutes preferences, in full (N) dimen-
sions, that can be represented with positive dotbids. The latter can represent only preferences
that can be expressed as a series of 2-dimensional slices. The more general programs of Sec-
tion 5 expands the set of slices, but not to permit the full range of seller preferences that
positive dotbids can represent. On the other hand, unpacking ”generalised paired bids” and
some other kinds of constraints across bids would require using negative dotbids.)

371t might superficially seem that the two approaches are not equivalent, even when both
are feasible, and that the ”unpacked” approach allows additional trade between sellers: e.g.,
if two sellers each wish to sell a total of R units of goods A,B, and C, might the equilibrium
involve one seller buying back 2R of good A, thus ending up with more of good A than it
started with? (while, e.g., the other seller buys back 2R of good B, and bidders buy 2R of
good C). The answer is "no” because Y a s? = R implicitly assumes that the seller places no
value on more than R units of j, so would never want to buy back more than R units of j in
this transaction, even if they were available.

38Unless there’s a single dominant seller, a TQSS doesn’t seem an especially natural thing.

39The ”unpacking” method automatically handles any needed rationing among sellers. Ra-
tioning among sellers would, in principle, be needed in the supply curves approach.

40T his is, of course, just the generalisation of the standard point that setting a reserve price
when selling a single object is equivalent to promising to definitely sell the object, but entering
a bid of one’s own at the reserve price.

41Tt is easy to generalise to the programs of Section 5.

28

To see the equivalence, observe that large T guarantees that all the paired
bids will be filled, so the auctioneer will buy back at least (N — 1)R units.
Moreover, the values of the ”paired bids” mean that if, for simplicity, p; —p;—1 #

q : q q
1 V3, q, the auctioneer buys back Z{q|u§>pj Cpa} S5 T Z{ql;t§+1<pj+1—pj} i1

_ q q : :
= (R~ Z{qm;?@rpj—l} SJ') + Z{q|#§+1<p]‘+rm} Sjp1 WIS of good j, for 1 <
; e o]]a q q :

j < N, that is, on net sells Z{ql#?<pjfpj—1} s — Z{q|u§+1<m+rm} s7,1 units
of good j, for 1 < j < N, exactly as the supply curve formulation requires (and
it is also easy to check the cases in which j =1, j = N, and/or p; — pj_1 = ,u?
for some j,q).

Constraints on how much individual bidders can win

[Implemented in the command line program, but not, at the time of writing,
in the web application.]

We can limit the amount any individual bidder can win as a fraction of
the auction "size” > si = R.A2. Our current implementation should be used
with caution if there are any asymmetric paired bids,*> and/or we are using a

TQSS.44

Additional Constraints

[The ability to specify a total quantity constraint across all of a bidder’s bids
s implemented in the command line program but not, at the time of writing, in
the web application.]

We permit bidders to input a total quantity constraint across a group of

42Limiting the amount any individual bidder can win as a fraction of the total actually
allocated would be harder: we cannot simply implement this as a constraint in the LP, because
the program might then allocate some units at prices below the costs of the relevant steps
and/or prices above bids’ values, because the objective function loses less from that than
it gains from the relaxed constraint on allocating goods to a different bidder who is total-
quantity constrained. (Another issue is that we would always allow a bidder to win some
minimum—otherwise we would have a problem if there were only 1 or 2 bidders. Also a very
tight a constraint might facilitate collusion.)

43With asymmetric paired bids, constraints can generate complements. (Consider a single-
ton bid for 1A at price 3 and an asymmetric paired bid for (1B or 2C) at prices 3 and 3(per
unit). Assume an overall constraint of 2 units. If prices are 0,0,1, the bidder wants A+B. If
the price of A rises to 3, the bidder wants 2C.)

44 At least in theory, there may be no solution that satisfies the TQSS. The problem is
that whereas ordinarily if we increase the size of the auction, then prices must go down, now
increasing the size of the auction relaxes the constraint on the amounts bids can win, and could
conceivably push at least one auction price up, so (see section 3) there may be no intersection
between the graphs of R and 7. However, we can simply say we don’t mind what the prices
are at the maximum total auction size, i.e., force the maximum total auction size to be the
solution if there is no other solution. (Alternatively, a fixed limit on how much people are
allowed to bid for could guarantee a solution to the TQSS.)

Also, at least in theory, we can construct cases in which there is more than one intersection.
In this case we can take the first one we come to, which would either be the one that allocates
the least, or the most, depending on where we start. In fact we use binary search to save
computer time (this always yields a solution if the TQSS starts at zero and covers a large
enough range).

29

bids.#546 We could easily permit additional linear constraints that don’t gener-
ate new constraints on other bidders, or new incentives for allocations to other
bidders.*”

Budget-Constrained Bidders

[Implemented]

Our implementation for budget-constrained bidders does not use linear pro-
gramming, so is beyond the scope of the current paper.

Maximising Profitability rather than Efficiency

[Implemented, but restricted to horizontal auctions without a TQSS. We
currently permit standard paired bids, but not asymmetric or generalised paired
bids. (Improvements are currently under development.)]

This is trivial for discriminatory pricing—our program solves the problem!
(i.e., conditional on using discriminatory pricing, our program maximises prof-
its).

For our standard uniform pricing this is harder, and does not use linear
programming, so discussion of the details is beyond the scope of this paper.

7 Appendix

7.1 Proofthat the n ”tweaks” determine the 24, ..., zy uniquely
when all the goods are sold

Assume we already know, without ambiguity, the pricesinset J C {1,...,N}
of goods. We will show that we can also find, without ambiguity, the price of
some good j' ¢ J. We can then apply this argument, first when J is empty,
and then repeatedly, to show that the price of every good can be found without
ambiguity.

Assume that the equality in CC 4 holds for every j. (This is w.l.o.g. because
although this equality need not hold when z; = 0, these values of y;’ are always
an optimal solution.) It follows that the good j consistency constraint holds
with equality for every j, so we may take the sum over all these constraints for
every j' ¢ J, yielding:

SRR S 0 SIED SUM ED ol DY ST

i, 5/ ¢J J'ELI'#EN N\ g J'E'=N 4

45 A total quantity constraint across a group of ordinary paired bids is just an easy gener-
alisation of a generalised paired bid. (The (single) generalised paired bid {k;, Vi K .} can

be written as a set of bids (one for each value of j, 1) of sizes n;. ; and values (O,....O,v; 1> 0,...0)

which is constrained by >, a% ; < k;.)

461f the constraints create complements, our program maximises welfare but there may not
be a unique lowest competitive equilibrium price.

See also note 44 above, for the issues arising if prices are not be monotonic in the ”size” of
the auction.

4"Note 42 discusses the difficulties created by allowing bidders to enter constraints that
generate new constraints on, or new incentives for allocations to, other bidders.

30

If every time we allocate on a step on any good j' ¢ J, we allocate the step in
full, then every term (Zq vl =2, y}l,ﬂ) (if 5 # N) or >,y (if i/ = N) has
remainder 7. So if we allocate in full on all steps on all goods j’ ¢ J, then the

non-integral part of the RHS of (2) is (N — |J|)n, and so also the LHS of (2) is
non-integral. So in this case for some bid 4,

Case (i) 0 <3 j4; 'k, < k' for some .

Moreover, if case (i) does not hold, the RHS of (2) must be integral. There
is therefore some step on which we have only partially allocated, that is, some
j' ¢ J with 0 < yj, < s% or 0 <y, <sj,, Furthermore, if both j' —1 ¢ J
and j' ¢ J, then the two occurrences of 3y in the RHS of (2) would cancel
out. Similarly, if both 5/ ¢ J and j'+1 ¢ J then the two occurrences of Zq y?url
would cancel out. So there must be a partially allocated step on some j' ¢ J
for which such a cancellation does not apply. That is, if case (i) does not hold,
then one of

Case (i) 0 < y?, < s?, for some ¢ and some j' ¢ J, such that either ;' —1 € J or
-/
j =1

Case (ii") 0 <y, < s}, for some ¢ and some j' ¢ .J, such that j' +1 € J.

We can now consider each of the posssible cases in turn:

Case (i). Let bid i be such that 0 < ijngé/ < k'. Now:

Either 3, rh = Zj'ng‘x;‘” so0<3 zh < k' In _this case CQ 6 and CC 5
jointly imply that max;{v; —z;} = 0. But since Zj Th = Zj,éj %, only goods
j' ¢ J are being allocated to bid i, so max;g ;{v}, — zj:} = max;{v} — z;} = 0.
Moreover, it now follows from CC 5 that all goods that are allocated to bid ¢
have {v} — z;} = 0. So the price zj: of at least one good j' ¢ J is now known
without ambiguity.

Or0< Zj/ng xé-, < Zj xé <k, so bid i must be being rationed across one
or more goods ¢ J and other goods € J. By (the contrapositive of) CC 5 the
surplus is the same for all such goods. That is, there exists some good j' ¢ J
and a good j € J with v}, — zj; = v} — 2;. Since z; is already known without
ambiguity, this fixes the price of the good j’ ¢ J without ambiguity.

Case (ii). The contrapositives of CC 7 and CC 8 tell us that uf, = 2z — ;1.
Since j' — 1 € J, the price z;j,_; is already known without ambiguity, so this
fixes the price of j' ¢ J without ambiguity.

Case (ii’). Asin case (ii) above, CC 7 and CC 8 = z;/41—z;/; Since j'+1 € J,

this fixes the price of j' ¢ J without ambiguity.
This completes the proof 0.

31

7.2 Proof that the use of n “tweaks” to resolve ambiguity
in prices, selects the lowest possible prices, when all
the goods are sold

At any solution of our ("untweaked”) program, let the total quantity of
good j allocated to the bidders be X; = ix;, and the prices be {z;}. Let
Y; = >, 4], so in the solution Yj = X; + X; 11 + ..+ Xn. (We noted above
that j = 1 is an exception to the rule that compatibility constraints bind in
the solution—but we can think of the Y7 that satisfies this equality as being
the “correct” Yi, so this is w.lo.g.). So X; = Y; — Y4y for j < N, and
Xy = Yn. Now 7tweak” the program by adding (N + 1 — j)n to 8]1 At
the original prices, {z;}, the supply conditions would be satisfied by quantities

{X } that satisfy Y;+ (N +1—5)1 = X;+ X414+ Xn, 50 X; = Yj—Yj 1147
for j < N, and Xy =Yy + 7. That is, they would be satisfied by {Xj} such

that X — X; =1 > 0. So excess supply, X — X, would be weakly positive for
every good j. So since both the new bupply curves and bids represent ordinary
substitute preferences, it follows from Theorem 23 of Milgrom and Strulovici
(2009) that there exists an equilibrium of the ”tweaked” program at which all
prices are weakly lower than {z;}. But we have already established that the
prices of the "tweaked” program are uniquely determined, so they are therefore
weakly lower than any equilibrium prices of the "untweaked” program. O

7.3 Proof that, without paired bids, ”tweaking” the bids
by adding aj;e to all bids on the jth good, in which the
a; € {1,..., N}, selects {yf} and), 2% uniquely.

We "tweak” the bids by adding aje to all bids on the jth good, in which
the a; € {1, ..., N}are such that j is the (IV 4+ 1 — a;)th preference good (so the
good we most prefer to allocate to has a; = N, and the good we allocate to last
has a; = 1), and € < ﬁ (assuming all bids are integers, e.g., whole numbers of
basis points). That is, the objective function becomes

max Z(v; +aje)x; — Z,u?yg
Jq

xl,...7xM,{yj} ij

Let the shadow prices with the new objective function be z1,..., 2}, and the
shadow prices rounded down to the nearest integers be z1,...,2n.

We show that {x?} are optimal choices for the bidders in the “old” problem,
if the prices are {z;}. There are three cases.

1. If x; = k*, then vé +aje > zé so, since all the vé and z; are integer, and
all the aje < 1, it follows that vj > zj (the cases > and = yield > and =
respectively), so x; = k' is an optimal choice (in the “old” problem).

32

2. If x; = 0, then 11; + aje < z, so (since all the vj and z; are integer, and
all the aje < 1) we have v; < zj, SO ac; = 0 is an optimal choice.

3. If % € (0,k"), then v} 4 aje = 2} so (since all the v} and z; are integer,
and all the aje < 1) we have v} = z;, so any z, € [0, k"] (consistent with
the constraints) is an optimal choice.

Now we show that {y7} are optimal choices for the auctioneer in the “old”
problem if the prices are {z;}. For convenience, we write z{, = zp = 0 for the
case j = 1).

L If yf = s%, then 2} — 27 ; > u? so, since all the pf and z; are integer, it
follows that z; — zj_1 > pf, so y§ = s§ is an optimal choice (in the “old”

J J
problem).

2. Iy =0, then 2/ — 2, < pf 50 (since .all the ug and z; are integer) we
have z; — zj_1 < pf, so yj = 0 is an optimal choice.

3. If yf € (0, %), then 2/ — 2% | = pu so (since all. the .and z; are inte.ger)
we have z;—z;_1 = pj, so any yj € [0, s§] (consistent with the constraints)
is an optimal choice.

Therefore, since {x'} and {y{} are also consistent with the constraints of
the old problem (the constraints to the new and old problems are the same!),
they are a solution to the old problem.

Absent lexicographic preferences, the auctioneer might be indifferent be-
tween allocating or holding back units of goods, and there might be bids on
different goods that are “tied”. But in the solution given here, the allocation
of any good to some bidder is always preferred, and bids on higher prefer-
ence goods are always allocated in preference to “tied” bids on lower preference
goods, so this is a solution to the lexicographic-preference problem. Since it
elementary that the set of optimal solutions to a linear programme is a con-
vex set, it is straightforward that this solution is also the unique solution to
the lexicographic-preference problem (see formal proof in next subsection of
Appendix). O

7.4 Proof that solving the lexicographic preferences de-

termines), x; uniquely, for all goods j.

Proof.The set X of solutions {xé}, {yj} optimising the objective function is
convex, by standard theory of linear programming. It follows that its image X
under the linear transformation

{z5}i {vites — {Z w;}

is convex also. We thus have a convex subset of N-dimensional space (recall N
is the number of goods) representing all possible total allocations against each

J

33

good which optimise the objective function. Let the axes of this space be ¢; for
j =1,...,N (t; being the total allocation against good j. Note that X has
dimension at most V.

The subset X! of X for which Y ; t; is maximised is again a convex set, be-
cause it is the intersection of a convex set and a hyperplane (> jti= constant).
It has dimension at most N — 1, as it lies in this hyperplane.

Next, if j; is the good first in order of priority, the subset X2 of X! for which
t;, is maximised is again a convex set, being again the intersection of a convex
set and a hyperplane. It has dimension at most N — 2 since the hyperplanes
Zj t; = constant and t;, = constant intersect in this dimension (they have
linearly independent normals).

We continue this argument for each subsequent good in order of priority,
obtaining at each step a new convex set constrained by a smaller dimension.
Finally, when we distinguish between the (N — 1)th good and the Nth good,
we obtain a single point.

So the image of the lexicographic preference problem in this N-dimensional
space is unique — that is, >, x; is uniquely specified by the lexicographic pref-
erences. O

7.5 Alternatives approaches to rationing

A. We simply let the linear programme do what it would do. This is of course,
efficient, and allocates the maximum amount possible (if we already imposed
tweaks to implement the auctioneer’s preference to allocate the maximum pos-
sible) but is completely arbitrary, and may look unfair. So the following variant
is probably a considerable improvement:

We could tweak the multiply-marginal bids by increasing their prices on good
j by jo. (We could increase the prices by a slightly larger amount on triply-
marginal than doubly-marginal, etc.) We then rerun the LP. This should favour
the multiply-marginal bids in the allocation, while still selecting a solution (after
rounding prices back down).

We could further allow paired bidders to specify their own lexicographic pref-
erences about where they are used, by allowing them to specify component(s)
of their bid to be tweaked more than other components if they turn out to be
multiply-marginal. (See variant D(iii), in the main text.)

We can also then go through the goods in turn, reallocating to treat all
the other rationed bids equally, which is easy to do since they are all ”singly-
marginal” (while leaving the allocations to multiply-marginal bids unchanged).

The (?only) remaining problem is that the allocations of multiply-marginal
bids may look strange. So we should finally reallocate, so that identical multiply-
marginal bids are treated identically. (This is easy to do, by just rationing
equally among all identical bids.*®)

[This doesn’t quite solve all problems—e.g., a multiply-marginal bid may by
chance be treated ”"worse” than another which is a multiple of it.]

48See note 26, in main text.

34

B. We could divide up the multiply-marginal bids (doubly-marginal into two
bids for 1/2 unit, triply-marginal into three bids for 1/3 unit, etc). We are then
in a no ”OR” bids situation, and simply ration fairly between all the bids. This
is clear and straightforward and fair, but may allocate less than it could do, and
we assume we have lexicographic preferences for allocating more rather than
less. [The problem arises if there are too many multiply-marginal bids, e.g., if
there are m = 3 11s paired with n = 3 30s, we’re not allocating the full 2 units
of 11s, even though this would be possible.]

(Another objection is, that as this scheme stands, multiply-marginal bidders
may feel hard done by — they may not like receiving little bits [and we want to
favour paired bidders])

More problematic, this can be inefficient if there are multiply-marginal bids,
where the marginal parts are (all) above the allocation prices: assume we will
sell two units at 30 and two at 11. But assume we have a multiply-marginal
bid at (40, 21) in addition to two bids at 30 and one bid at 11. Then efficiency
requires (40, 21) gets a full unit. Moreover, we can’t just divide the bid into
two halves, since the program may need to allocate to one side or the other—in
this case, the side that has price 21 must be the side that is allocated. Since we
may have a cycle of multiply-marginal bids, e.g., one may be marginal between
A and C; a second marginal between A and B; and the third marginal between
B and C, it seems hard to guarantee efficiency with this approach.

So this approach (B) doesn’t seem appealing unless either (i) we have no
multiply-marginal bids, or (ii) the auctioneer has the flexibility to vary its supply
a little so that multiply-marginal bids, where the marginal parts are (all) above
the allocation prices, can be given the choice of which part they would like filled,
prior to rationing the remaining marginal bids.*?

49There are some natural variants of this approach, but they suffer from the same basic
problem

(i) Having divided the multiply-marginal bids into halves, or thirds, etc., we could favour
them in the straightforward way of filling them first on each good (rationing among them if
necessary), before rationing any remainder among other bids. (Or fill/ration among triply-
marginal, then doubly-marginal, etc., before other bids.)

(ii) Not quite the same as B, but similar:

Go through the goods in the same lexicographic order that the auctioneer used earlier.
Assume, w.l.o.g. that good 2 (the 30s) comes before good 1 (the 11s) in this order.

Then either (a) each of the bids of 30 gets 1/n units, whether or not they are parts of
multiply-marginal bids.

or (a’) allocate to the 30s those bids on 30s that are parts of multiply-marginal bids (ra-
tioning among them if necessary), before rationing any remainder among other bids. [this is
as in B(i), but without initially having divided pairs into smaller bids]

Now either (b) any parts of multiply-marginal bids on 11 are then reduced by the amount
allocated to a 30. (In case (a) that means reduce to a bid of (1 —1/n) on 11.) The 2 units
of 11 are now allocated in proportion. (In case (a), if e.g., just 1 of the m bids was part of a
multiply-marginal bid, then all the bids on 11 now get 2/(m — 1/n).)

or (b’) any of the k bids on 11 that haven’t yet received anything (the non multiply-
marginal bids in this example, but would include multiply-marginal bids that are marginal
with lexicographically still-lower goods) get 1/n if k/n < 2 (or 2/k otherwise), then all m bids
share any remainder. [(b’) may seem fairer than (b), or may seem "hard” on the multiply-
marginal bids.]

As in other B-schemes, we may be allocating fewer units than we could allocate (by ”wast-

35

(This issue raises no problems for the other broad approaches we consider.)

C. The auctioneer makes additional units available to allocate all the bids
(perhaps giving multiply-marginal bids the choice). Or the auctioneer might
do a limited amount of this (perhaps favoring multiply-marginal bids). (Or the
auctioneer could allocate fewer units.)

7.6 Including a Normalised TQSS*

We assume there are [= 1,..., N horizontal goods, i.e. N columns with only
one good each. The normalised TQSS is defined as a step function and TQSS
steps are denoted by n. Each step n has length 7,, and height x,. The height
of a given step n represents the seller’s cost of supplying a unit of any good
on that step, i.e., the seller’s marginal cost of supplying an additional unit of
any good (in addition to the marginal cost specified by the respective good’s
supply curve) when the total number of units of all goods sold, > ol y}, satisfies
E;:ll Ts < D qu yl < >, 7s. Let t, denote the quantity allocated on step
n. We incorporate the normalised TQSS in the linear programme by subtract-
ing >, knt, from the objective and by including the total supply constraint
Z%l yl <3, tn and the step constraint 0 < ¢, < 7,.

Primal problem

max, Z vizh — Z,u?y? — Z Knln
l,q n

{=i}{v] i

such that (corresponding shadow values on the right)

> xf < ki Vi b;, constraint on size of bids
yl < sf Vg,V wuf, constraint on length of steps
PR TEDY U < 0 W z;, good [consistency constraint
> ol yi =3, th < 0 w, total supply constraint
t, < T Vn Pn, constraint on length of TQSS step

and all variables are non-negative.

Dual problem

ing” units on the 30s, when they could have been allocated to 11s). The more we favour
the multiply-marginal bids (as in a’+b), the more we run the risk of ”inefficiently” allocating
fewer units than we could allocate.

Another issue with B(ii) is that a multiply-marginal bid may regret being allocated on the
30, since it may lexicographically prefer the 11 for some reason. We’re not too troubled about
this, because it has already faced the risk of this happening in the much more likely event that
there was a tie between prices 30 — z and 11 — x for some x > 0, in which case it would have
been decided on the basis of the auctioneer’s needs (or possibly auctioneer’s lexicographic
preferences).

50This Appendix was written by Simon Finster.

36

min k'Y + sTud + TnPn
(b1} Lz {uf b wfpn) Z Z L Zn:

7 q,l
such that
b4z > ’Uli Vi,l corresponding :U;
ul —z+w > —pf Vgq,Vl corresponding y
—w+pp > —kn Vn corresponding t,,

and all the variables b’, u}, z;, w, and p,, are non-negative.

Shadow prices

The interpretation of the shadow price b* is unchanged. The shadow price
u}, corresponding to allocating on the gth step of the good ! supply curve, is
the marginal value of relaxing the constraint y/ < sj. It is interpreted as the
marginal value of being able to sell an additional unit of good ! when the total
supply constraint is not binding. When the total supply constraint is binding,
it must be interpreted as the marginal value of being able to sell an additional
unit of good [instead of a unit of any other good I’ # [. The shadow price on
the lth consistency constraint, z;, is interpreted as the price of good [. w is the
marginal value of being able to sell an additional unit by relaxing the TQSS
constraint. p, is the marginal value of being able of sell an additional unit
on the same TQSS step (the marginal value of relaxing the TQSS step length
constraint).

Complementary slackness

CS 1. If 2} # 0, then b' = v} — 2.

CS 2. If Y, 2} < k; then b* = 0.

CS 3. If 3°,zj < 3, 9/ then 2 = 0.
CS 4. If y! # 0, then u] + pf =z — w.
CS 5. If y/! < sf then uf = 0.

CS6. It 3y <>, tn then w =0.
CS 7. If t, <7, then p, =0.

CS 8. If t,, # 0 then w = p,, + Kp.

Auction Prices
If ¢ is the final step on which good [is allocated and n is the final TQSS step
on which any good is allocated, then

37

(i) if 0 <y < sf, then z; = w+ puf VI

(i) if y! = s¢ (and y{™" = 0), then z € [w + pf, w + pd ™) VI
(iii) if 0 < ¢, < 7, then w = K,

(iv) if t, = 7, (and t,, 11 = 0), then w € [kp, Knt1]

Prices are typically set equal to the “cost” of the final supplied unit which
is pf plus an increment w, which is typically strictly positive. Depending on
the bids, prices may also be higher than i +w. The price of good [is z;, when
this is uniquely defined. When the {z;} are not unique, we will select the lowest
possible values such that the CS constraints hold. The same principle applies
to the normalised price (or the TQSS shadow price) w itself. Whenever w is
not unique, we select the lowest possible.

Tweaks and dummies to determine correct and unique prices

In the case where (i) no bids for good I are made OR (ii) bids for good I are made
but no positive amount is allocated on good I, we need to employ a dummy bid
at an arbitrarily high price in order to (a) fix prices uniquely and (b) determine
prices correctly by adjusting for the shadow value of the supply constraint. The
size of this dummy bid is 7/2, where 0 < n < ﬁ Remember that the supply
curves are tweaked by adding (N + 1 —1)n to s; in order to uniquely determine
the lowest prices possible.

Additionally, we need to tweak the first step of the TQSS by adding 2Nn
to it (so the dummy bids don’t fill up the tweak and the overall quantity con-
straint doesn’t mess with the tweaks on the supply curves). Then we always
have w = k,, with n being the last step of the TQSS with ¢, > 0.

8 References

Baldwin, E., Goldberg, P., Klemperer, P. and Lock, E. (in preparation).
‘Solving Strong-Substitutes Product-Mix Auctions’.

Baldwin, E., and Klemperer, P. (in preparation). ‘Implementing Walrasian
Equilibrium —the Language of Product-Mix Auctions’.

Frost, T., Govier N., and Horn T. (2015). ‘Innovations in the Bank’s provi-
sion of liquidity insurance via indexed long-term repo (ILTR) operations’. Bank
of England Quarterly Bulletin, 55/2: 181-188.

Klemperer, P. (2008). ‘A New Auction for Substitutes: Central Bank Lig-
uidity Auctions, the U.S. TARP, and Variable Product-Mix Auctions’. Mimeo:
Oxford University.

38

Klemperer, P. (2010). ‘The Product-Mix Auction: a New Auction Design
for Differentiated Goods’. Journal of the European Economic Association, 8:
526-36.

Klemperer, P. (2018). ‘Product-Mix Auctions’.Nuffield College Economics
Discussion Paper 2018-W07

39

LIST OF MAIN VARIABLES
. gcz allocation of bid i to good j (bid size k;, values v;)

e yj allocation to gth step of goods j and above (step length s{, height yf)

dual variables

e b; marginal value of bid 4
(marginal cost of k; constraint)

o u?. marginal value of using gth step for goods > j
(marginal cost of s constraint)

e z; (shadow) price (= marginal value) of good j
(marginal cost of jth “consistency constraint”)

Price spread j over j — 1

3
Sj
-€------- >
82 w
B > |
1 |
S A
J |
e N M
A L9 |
. G ‘
L ! !
Y Y Y

Quantity allocated to goods j,7 +1,..., N.
Figure 1: The jth “supply curve”, which relates price spread of the jth good

over the next lower-quality good, with the quantity of all goods superior or
equal to j, is composed of steps.

40

	Fixed quantity of each good
	One Good case
	Many Goods

	Variable quantities
	Complementary slacknessThe beginning of this section isn't needed for understanding the program–but the examples may help the reader.
	Characterisation of the solutionThis section isn't needed for understanding our program, but it shows the program solves the economic problem we want to solve.
	Non-commensurable quantities to avoid ambiguity in prices
	Non-commensurable prices to avoid ambiguity in quantities

	The Total Quantity Supply Schedule (“TQSS”)
	Rationing
	Objectives
	Strategy

	Extension to "Horizontal" as well as Vertical Goods
	Other Extensions/Variants
	Appendix
	Proof that the "tweaks" determine the z1,...,zN uniquely when all the goods are sold
	Proof that the use of “tweaks” to resolve ambiguity in prices, selects the lowest possible prices, when all the goods are sold
	Proof that, without paired bids, "tweaking" the bids by adding aj to all bids on the jth good, in which the aj{1,...,N}, selects {yjq} and ixji uniquely.
	Proof that solving the lexicographic preferences determines ixji uniquely, for all goods j.
	Alternatives approaches to rationing
	Including a Normalised TQSSThis Appendix was written by Simon Finster.

	References

