
Specification for Implementing the

Product-Mix Auction Solver

August 28, 2019

1 Definitions

1.1 Supply

A good is represented by an integer j ∈ {1, . . . , N}.
A supply curve for good j is a step function σj , represented by a list of step

widths sqj ∈ R+ and heights µqj ∈ N.1

The supply curve should be nondecreasing, i.e. µq
′

j ≥ µ
q
j for all q′ > q.

A supply σ consists of:

• a set of goods {1, . . . , N};

• a supply curve σj for each good;

• a partial order � on the set of goods.

Let Covers(j) denote the set of goods that cover a good j in the partial
order, i.e. its immediate successors.

A base good is a good that does not cover any other goods.
A vertical supply is one where 1 � 2 � . . . � N , so 1 is the only base good,

Covers(j) = {j + 1} for j < N , and Covers(N) = ∅. (The goods are ordered
“vertically” in a single column.)

A horizontal supply is one where the partial order is trivial, i.e. every good is
a base good and Covers(j) = ∅ for all j. (The goods are ordered “horizontally”
in a single row, with no good above any other.)

The size of supply curve σj is the sum of its step lengths:

size(σj) =
∑
q

sqj

1That is, σj(x) =
∑

q µ
q
jχ

q
j (x), where χq

j is the indicator function for the qth step and eqj
is the left endpoint of the step, given by

χq
j (x) =

{
1, if eqj < x ≤ eqj + sqj
0, otherwise

eqj =
∑

1≤k≤q−1

skj .

1

The size of a supply σ is the sum of the sizes of the supply curves for the base
goods:

size(σ) =
∑

j base good

∑
q

sqj

(thus size(σ) =
∑
q s

q
1 if σ is a vertical supply and size(σ) =

∑
j,q s

q
j if σ is a

horizontal supply).

1.2 Bids

A bid consists of:

• a bid label i ∈ {1, ...,M};

• a total quantity ki ∈ R+;

• for each good j:

– a bid value vij ∈ N;

– a maximum quantity κij ∈ [0, ki];

– a trade-off coefficient aij ∈ R+.

An paired bid has vij > 0 and vij′ > 0 for some j 6= j′. A single bid has

vij > 0 for some j and vij′ = 0 for all j′ 6= j.

A bid is non-generalised if κij = ki for all j, or generalised if κij < ki for
some j.

A bid is symmetric if aij = aij′ for all j and j′, or asymmetric otherwise.
An additional constraint with label m consists of constants Cm, C

′
m ≥ 0 and

coefficients cim,j ≥ 0 for each bid i and good j. These determine a constraint∑
i,j c

i
m,jx

i
j ≤ CmR + C ′m, where R = size(σ) is the total size of the auction

supply.2

2Thus these additional constraints allow the incorporation of constraints of both the form
discussed in the “Additional Constraints” subsection, and the “Constraints on how much
individual bidders can win” subsection of the paper “Notes on solving the Standard Version
using Linear Programming” on http://pma.nuff.ox.ac.uk.

Note that if cim,j depend on the (goods) j, the constraints may create complements, so our
program maximises welfare but there may not be a unique lowest competitive equilibrium
price. Even if the cim,j do not depend on j, but Cm 6= 0, prices may not be monotonic in

the “size” of the auction, so that the TQSS may be “satisfied” at multiple price vectors (see
discussion below).

In fact, we have currently implemented only the case in which cim,j = 1 for all i, j,m (and

only in the command-line version of the software). Specifically, we consider constraints which
limit every bidder’s total quantity won across all bids either to a given quantity C′ (i.e.
Cm = 0, C′m = C′), or to a given fraction C of the auction “size” (i.e. Cm = C,C′m = 0).

2

http://pma.nuff.ox.ac.uk

1.3 Auction

An auction consists of:

• a supply σ;

• a set of bids;

• a set of additional constraints on the bids;

• a scale factor ρ ∈ Z giving the number of decimal places of precision
required in quantities (prices are always given to the nearest integer);

• a preference permutation (p1, . . . , pN) of (1, . . . , N) such that pj = 1 for
the good that the auctioneer most prefers to allocate, and pj = N for the
good that the auctioneer prefers to allocate last.

To ensure that rounding does not lose information when reporting quantities,
the supply and bids should satisfy the invariant that all sqj , ki/a

i
j and κij/a

i
j are

all multiples of 10−ρ.

2 Solving an auction

Solving an auction requires:

• determining an auction price for each good in the supply (and possibly
also the total quantity to be supplied, if a TQSS is in use);

• allocating quantities of goods to successful bids.

2.1 Determining auction prices (single iteration)

Consider the linear programme with variables

• xij (allocation of good j to bid i)

• yqj (allocation on qth step of goods j and above)

and objective function ∑
i,j

v̂ijx
i
j −

∑
j,q

µqjy
q
j

subject to the constraints∑
j a

i
jx
i
j ≤ ki ∀i (bid constraint)

0 ≤ aijxij ≤ κij ∀i, j (generalised bid constraint)

0 ≤ yqj ≤ ŝqj ∀q, j (step length constraint)∑
i x

i
j ≤

∑
q y

q
j −

∑
j′∈Covers(j)

∑
q y

q
j′ ∀j (good j consistency constraint)∑

i,j c
i
m,jx

i
j ≤ CmR+ C ′m ∀m (additional constraint m)

3

where

v̂ij = vij + εpj+1 ε = 1
2 (prices tweak)

ŝqj =

{
s1j + Tjη, if q = 1

sqj , otherwise
η = 1

4·10ρ·N (quantities tweak)

Tj = 1 +
∑
j′∈Covers(j) Tj′

R = size(σ)

To reduce the incidence of ambiguous prices, in addition to the bids provided
by the bidders, we add for each good j an “extra bid” with label j∗, given by
(for all goods j′):

kj∗ =
η

2

κj∗j′ =
η

2

aj∗j′ = 1

vj∗j′ =

{
V, if j = j′

0, otherwise

where V is larger than any other bid price.
Let zj denote the shadow value of the good j consistency constraint. This

represents the price of good j assuming uniform highest-loser pricing.
Solving this linear program yields values for the prices z = (z1, . . . , zN), and

additionally yields an efficient (but not necessarily fair) allocation xij of goods
to bids.

To eliminate the effect of tweaks, the calculated prices must be rounded to
the nearest natural number, and the calculated quantities must be rounded to
ρ decimal places (i.e. to the nearest multiple of 10−ρ).

2.2 Determining auction prices (with TQSS)

A TQSS τ ∈ RN → R is a function from prices of all the goods to the total
quantity that should be made available at those prices. It must be (weakly)
increasing (i.e. increasing the price of any good must not decrease τ). In general,
τ will be a (weakly) increasing function of the price for a particular good, or
the total price of all the goods.

Fix λ ∈ [0, 1]. Define a supply σ ·R (σ scaled to size R) by multiplying each
sqj by

• R
R0

, if j is a base good

• λR0+(1−λ)R
R0

, otherwise

4

where R0 = size(σ). Observe that size(σ · R) = R. Note that if λ = 0 then
supply curves for all goods are scaled by R

R0
, while if λ = 1 then supply curves

for base goods are scaled but those for non-base goods are left unchanged.
To ensure that the tweaks to determine unique prices are not affected by

scaling the supply, the step widths must be limited to ρ decimal places (i.e.
must be multiples of 10−ρ). We round each partial sum of step widths upwards
to ρ decimal places. That is, we round the scaled s1j to ds1jeρ and the scaled

sqj to d
∑q
r=1 s

r
jeρ − d

∑q−1
r=1 s

r
jeρ, where d·eρ denotes rounding upwards to ρ dec-

imal places. This may amplify rounding errors resulting from floating-point
imprecision, of course.

The TQSS τ is satisfied by the auction with the supply scaled to size R if
the prices z(R) arising from solving the LP are such that τ(z(R)) = R, i.e. the
available supply meets demand.

Our objective is to find R that satisfies the TQSS. In the basic problem,
the prices always (weakly) decrease with increasing supply.3 Suppose we have
an auction with supply of size Rmin, and we also have Rmax > Rmin such
that τ(z(Rmin)) ≥ Rmin and τ(z(Rmax)) ≤ Rmax. Thus we can perform binary
search for a root of τ(z(R))−R. If τ is strictly increasing, there will be a unique
solution. If τ is weakly increasing, there will be at least one solution, which may
lie in an interval (and there will be at most a single interval of solutions).

Thus solving the TQSS yields a final supply size R (accurate to ρ decimal
places) in addition to the prices and allocation. For the sequel, all uses of
the supply (e.g. when re-running the LP for rationing purposes) are implicitly
assumed to have scaled it to size R.

2.2.1 Alternative version of TQSS4

As an alternative way of solving the TQSS, rather than varying the supply
curves, we can add a constraint∑

j base good

∑
q

yqj ≤ R+ 2Nη

then vary R and search for a solution as before.
With this approach, the maximum value for R that will affect the resulting

prices is size(σ).

3However, if Cm 6= 0, (i.e., there are additional constraints that are a function of R) prices
may not always (weakly) decrease with increasing supply, so the TQSS may be “satisfied”
at multiple price vectors. However, the program will ensure that the TQSS starts at 0, and
covers a large enough range that binary search always yields a solution. (It would of course
be possible to use a slower search method to look for, e.g., the smallest R that is (sufficiently
close to) a solution.)

4See “Program 1* [Alternative version of TQSS]” in section 5 of the paper “Notes on
solving the Standard Version using Linear Programming” on http://pma.nuff.ox.ac.uk.

5

http://pma.nuff.ox.ac.uk

2.3 Allocating goods to bids (rationing)

Once the auction supply size R, prices of each good zj and total quantity sold
of each good Rj have been determined, we must allocate quantities of goods to
bids, such that each bid receives its preferences at the given prices. If the bid
value for a good is below the auction price, the bid does not receive any of that
good. If the bid value is greater than or equal to the auction price, the bid may
receive a quantity of the good, but if the supply of the good is limited and the
bid is marginal then the bid may receive a smaller quantity than it requested.

Without rationing, the amount of good j allocated to bid i is simply the
value of xij arising from solving the LP, rounded to ρ decimal places. This
allocation is guaranteed to satisfy the constraints, up to rounding error, but it
resolves ties arbitrarily.

2.3.1 Definitions

For each bid i and good j, let

wij =
vij − zj
aij

be the surplus achieved by allocating that good to that bid.
A bid is successful if maxj w

i
j ≥ 0, or unsuccessful otherwise.

The relevant bids of an additional constraint
∑
i,j c

i
m,jx

i
j ≤ CmR + C ′m are

the bids i for which cim,j 6= 0 for some j. A bid is constrained if it is generalised
or it is a relevant bid for an additional constraint; otherwise, it is unconstrained.
Two constrained bids i and i′ are related if i = i′ or if there is an additional
constraint for which both i and i′ are relevant bids.

A successful unconstrained bid i is multiply-marginal (on good j) if j ∈ J
and |J | ≥ 2, where J = argmaxj′w

i
j′ . That is, the bid is marginal between

receiving any of the goods in J , each of which yields equal maximal surplus. (If
the surplus is zero, the bid is also marginal between receiving one of the goods
and receiving no good at all.)

A successful constrained bid i is multiply-marginal (on good j) if wij = 0,

or if wij = wi
′

j′ for some related bid i′ and some good j′. (Note that this
definition might be seen as a misnomer: a “multiply-marginal” generalised bid
may actually be marginal only on one good, if it is succcessful on another good,5

but it does not hurt to include it.)
A successful bid is singly-marginal (on good j) if is not multiply-marginal and

wij = maxj′ w
i
j′ = 0. That is, the bid is marginal on receiving or not receiving

precisely one good yielding zero surplus, and does not receive any other goods.
A successful bid is marginal (on good j) if it is singly or multiply-marginal

(on good j).

5The reason is that, if additional constraints apply, the bid may be marginal between
receiving and not receiving a good yielding zero surplus (and not marginal between receiving
either of a pair of goods of equal surplus).

6

2.3.2 Reformulating the LP

Observe that unsuccessful bids always receive zero allocation, and bids that
are successful and not marginal always receive a full allocation of their desired
good. This is automatic in the LP. However, for a marginal bid there may not
be enough goods to fulfill the bid entirely, so it may receive less than its desired
allocation (including no units at all). The LP will allocate goods to marginal
bids arbitrarily, which is undesirable.

Thus we reformulate the problem to produce a fairer allocation. We proceed
by adjusting the multiply-marginal bids, solving a new LP to find the allocations,
then fairly redistributing between sets of singly-marginal or equivalent bids.
This approach may slightly favour paired bids.6

Replace each multiply-marginal bid i with a family of bids (i, l) approximat-
ing a linear demand that decreases from ki units at value vij to 0 units at value

vij + jδ, where δ = 1
N+1 . Solve the auction LP with the total quantity of each

good supplied now fixed at Rj =
∑
i x

i
j , and without the tweaks to determine

unique prices/quantities, to produce allocations x
(i,l)
j .

More precisely, let di be the number of steps with which to approximate bid
i, and let the family of bids replacing bid i be (i, 0), . . . , (i, di − 1) where

k(i,l) = ki/di

κ
(i,l)
j = κij/di

v
(i,l)
j =

{
vij + (l/di)jδ, if bid i is marginal on good j

vij , otherwise

a
(i,l)
j = aij

Fix D and let di = D if bid i is multiply-marginal, and di = 1 otherwise.7

Correspondingly, we need to replace each additional constraint∑
i,j

cim,jx
i
j ≤ CmR+ C ′m

with ∑
i,l,j

c
(i,l)
m,j x

(i,l)
j ≤ CmR+ C ′m

where
c
(i,l)
m,j = cim,j/di

6It is also possible to adjust all marginal bids, not just those that are multiply-marginal.
This produces a more complex LP, but avoids the need to redistribute between singly-marginal
bids, and does not favour paired bids in the same way.

7If bids are divided up into too many steps, the program might encounter arithmetic
precision issues. There is a trade-off between having enough steps to minimize the impact
of arbitrary choices, but not so many that it becomes impossible to distinguish the original
prices from the slightly increased prices. The (command-line version of the) software permits
the user to choose the step count, D, explicitly if wished.

7

We then solve the linear programme with variables

x
(i,l)
j (allocation of good j to bid i on step l)

and objective function ∑
i,j,l

v
(i,l)
j x

(i,l)
j

subject to the constraints∑
j a

i
jx

(i,l)
j ≤ k(i,l) ∀i, l (bid constraint)

0 ≤ aijx
(i,l)
j ≤ κ

(i,l)
j ∀i, j, l (generalised bid constraint)∑

i,l x
(i,l)
j ≤ Rj ∀j (resource constraint for good j)∑

i,j,l c
(i,l)
m,j x

(i,l)
j ≤ CmR+ C ′m ∀l (additional constraint m)

We now need to specify how to calculate fair allocations for the original bids.

2.3.3 Fairly sharing between singly-marginal bids

Let the initial interim allocation of good j to bid i be

x′ ij =
∑
l

x
(i,l)
j

This should now be fair between multiply-marginal bids, but singly-marginal
bids may still have arbitrarily received or not received units of their single
preferred good, and equivalent bids may not have received equal allocations.

Thus we redistribute the units allocated to singly-marginal bids fairly be-
tween them in proportion to the quantities they requested. More precisely, the
reallocation is:

x′′ ij =

κij
∑
im

x′ im
j∑

im
κimj

if bid i is singly-marginal on good j

x′ ij otherwise

(where im ranges over the bids that are singly-marginal on good j).
Observe that bids subject to additional constraints are not singly-marginal,

and hence this redistribution cannot violate the additional constraints.

2.3.4 Fairly sharing between equivalent bids

Finally, we wish to ensure that equivalent bids get equal shares: if two bids each
offer the same price for the same quantity, we should not give a full allocation
to one and ration the other. In the absence of additional constraints, equiva-
lence simply requires that bids are identical apart from their labels. However,
in the presence of additional constraints, it is nontrivial to specify a suitable
equivalence relation (we would not want to consider bids equivalent if they were

8

subject to meaningfully different constraints). Thus we simplify slightly and
treat all bids subject to additional constraints as distinct.

A bid that is relevant for an additional constraint is equivalent (only) to
itself. Two bids, neither of which is relevant for an additional constraint, are
equivalent if they are identical apart from their labels.

To ensure that equivalent bids get equal shares: for each non-singleton equiv-
alence class, take the total interim allocation to the whole class of bids and share
it evenly between them (rounding every allocation down to a multiple of 10−ρ).
That is,

x′′′ ij =

⌊∑
in
x′′ inj
n

⌋ρ
(where i1, . . . , in are the bids that are equivalent to bid i). We round down here
to avoid producing results that allocate too much, e.g. if sharing 5 units between
3 bids demanding 2 units each, rounded to the nearest integer, we should report
1 unit per bid rather than 2 units per bid.

This will not violate any additional constraints, because the amount allo-
cated to a bid after sharing will never be more than the amount previously
allocated to an equivalent bid (which is subject to corresponding constraints).

2.3.5 Choice of step count to limit unfairness

The maximum unfair share (i.e. the amount by which one multiply-marginal
bid may be arbitrarily favoured over another) is no more than u = maxi ki/D,
where i ranges over multiply-marginal bids. This is because unfairness is limited
by the width of the steps into which we break down the bids: the worst that
can happen is that a step is fully used on one bid but not on others.

Choosing D = 1 + maxi ki · 2 · 10ρ ensures that u < 1/(2 · 10ρ) and hence
rounding to the nearest multiple of 10−ρ will limit the arbitrary unfairness to
at most a difference of 10−ρ. For example, if ρ = 2 and we are sharing 1 unit
between 3 bidders, we might report allocations of 0.33, 0.33 and 0.34, but not
0.3, 0.3 and 0.4.8

8Of course, if the bids are identical in every respect apart from their labels, then “Fairly
sharing between equivalent bids” (previous subsection) will reduce them all to 0.33, 0.33, 0.33.

9

	Definitions
	Supply
	Bids
	Auction

	Solving an auction
	Determining auction prices (single iteration)
	Determining auction prices (with TQSS)

