
Specification for Implementing the

Budget-Constrained Product-Mix Auction Solver

September 30, 2019

1 Definitions

1.1 Quantities and prices

We may interchangeably use quantity or units to refer to some amount of a
good. Quantities of goods for budget-constrained auctions are nonnegative real
numbers x ∈ R+. A quantity vector x = (x1, . . . , xN) is an N -dimensional
vector of quantities, where xj ∈ R+ represents the quantity of good j. We will
typically write x for a quantity vector allocated to an individual bid and q for
a quantity vector sold by the auction as a whole.

Prices are nonnegative real numbers z ∈ R+. A price vector is an N -
dimensional vector z = (z1, . . . , zN). We will typically write v for a price vector
offered by a bid and z for a price vector determined by an auction.

1.2 Supply

A good is represented by a natural number j ∈ {1, . . . , N}.
A supply curve for good j is a step function σj , represented by a list of step

widths sqj ∈ R+ and heights µq
j ∈ R+, for some step indices q. That is,

σj(x) =
∑
q

µq
jχ

q
j(x)

where χq
j is the indicator function for the qth step and eqj is the left endpoint of

the step, given by

χq
j(x) =

{
1, if eqj < x ≤ eqj + sqj
0, otherwise

eqj =
∑

1≤k≤q−1

skj .

The supply curve should be nondecreasing, i.e. µq′

j ≥ µ
q
j for all q′ > q.

A supply σ consists of a supply curve σj for each good j.
The size of supply curve σj is the sum of its step lengths:

Rj = size(σj) =
∑
q

sqj

1

This represents the maximum quantity of good j available to be sold.

1.3 Bids

A bid consists of:

• a bid label i ∈ {1, . . . ,M};

• a total budget bi ∈ R+ that can be spent on the goods;

• a price vector vi = (vi1, . . . , v
i
N) of unit prices for each good.

1.4 Auction

A budget-constrained auction consists of:

• a supply σ;

• a set of bids.

2 Auction rules

Before we can describe the process used to solve an auction, we must specify the
rules that govern such auctions. In particular, we will show how one determines
the winning bids and what quantities of goods they get, for fixed auction prices.
This culminates in a definition of what it is to be a solution to an auction.

2.1 Classifying bids

Suppose bid i has maximum budget bi and offers unit bid prices vi = (vi1, . . . , v
i
N),

and that z = (z1, . . . , zn) is a vector of positive auction prices. We assume that
there is at least one zi > 0, and will in fact consider only those goods i such
that zi > 0. The goods i such that zi = 0 will simply not be allocated. 1 Let

rmax = max
j∈{1,...,N}

zj 6=0

vij
zj

G = argmax
j∈{1,...,N}

zj 6=0

vij
zj

so rmax is the highest bid-price to auction-price ratio, and G is the set of all
goods that achieve this ratio (of which there can be one or several).

Then:

• Bid i is winning if rmax ≥ 1 (i.e. if there is some j such that vij ≥ zj).

• Bid i doesn’t win any quantity of any good if rmax < 1 (i.e. if for all j we
have vij < zj).

1Individual bids may specify prices of 0, of course. However, an auction price of 0 for some
good can happen only when all bids offer 0 for that good, which results in “ignoring” the good
and simply allocating no quantity of it.

2

We can now further classify a winning bid into three different categories:

• If rmax > 1 and G consists of a single good j0, then the bid is said to be
non-marginal. Such a bid must receive all of its budget worth of good j0.

• If rmax > 1 and G contains two or more goods, the bid is said to be
marginal in the goods G. Such a bid may receive any linear combination
of the goods in G that is worth exactly its budget.

• If rmax = 1, the bid is said to be marginal in its budget and in the goods G,
regardless of the size of G. Such a bid may receive any linear combination
of the goods in G that is worth anywhere between 0 and all of its budget.

2.2 Valid quantity assignments

We now specify formally what a bid should receive in each of the cases defined
above. We say that xi = (xi1, . . . , x

i
N) is a valid quantity vector for bid i provided

that:

• If i is a non-winning bid, then xij = 0 for all j.

• If i is a winning non-marginal bid for good j, then xij = bi

zj
, and xij′ = 0

for all j′ 6= j.

• If i is a winning bid marginal in goods G, then:

1.
∑

j x
i
jzj = bi (the bid spends its entire budget);

2. xij = 0 for j /∈ G (the bid does not receive any non-preferred goods);

3. xij ≥ 0 for j ∈ G (the bid may receive any preferred goods).

• If i is a winning bid marginal in the budget and in goods G, then:

1. 0 ≤
∑

j x
i
jzj ≤ bi (the bid spends up to its budget);

2. xij = 0 for j /∈ G (the bid does not receive any non-preferred goods);

3. xij ≥ 0 for j ∈ G (the bid may receive any preferred goods).

An assignment of goods to bids is a set of quantity vectors {xi}, one for each
bid i, so that xij gives the quantity of good j assigned to bid i. Let qj =

∑
i x

i
j

be the total quantity of good j assigned across all bids.
We say that {xi} is a valid assignment (at prices z) provided that:

• for every good j, qj ≤ Rj , i.e. the total quantity of good j assigned does
not exceed the supply of good j;

• for every bid i, xi is a valid quantity vector for bid i.

A solution to an auction is a pair of a price vector z (the auction prices at
which goods are sold) and an assignment of goods to bids {xi} (the quantities
received by each bid) which is valid at prices z.

3

3 Solving an auction

The above section defined what it means to be a valid solution to an auction.
In the following, we give the objective function to be maximised in order to
determine the optimal solution, and explain the search algorithm for finding
such an optimal solution.

3.1 Auctioneer’s objective function

We seek to find a solution consisting of an auction price vector z and an assign-
ment of goods to bids {xi} that maximises the auctioneer’s profit, provided the
demands of the bids are satisfied. More precisely, let

ψz({xi}) =
∑
j

(zjqj − σ̂j(qj)) where qj =
∑
i

xij

be the profit made by the auctioneer using the auction price vector z = (z1, . . . , zN)
and selling the total quantity q = (q1, . . . , qN). Here σ̂j(q) is the cost to the
auctioneer of selling qj units of the good j, given by

σ̂j(q) =

∫ q

0

σj(x) dx

where σj is the supply curve step function.
We seek to determine

argmax
z,{xi}

(
ψz({xi}) | {xi} valid assignment at price vector z

)
.

We proceed by first constructing a set of price vectors S amongst which the
optimal auction prices must be found, then for each z ∈ S we search for a valid
assignment that maximises ψz.

In general the optimal price vector is not guaranteed to be unique. Similarly,
for a given price vector there may be multiple valid assignments of goods to
bids that yield the maximum profit at those prices. The program will choose
arbitrarily to resolve such ambiguity.2

3.2 Determining candidate auction prices

In order to obtain a set S of candidate auction prices amongst which the op-
timal price vector is guaranteed to be, it is enough to consider points in price
space that are obtained by intersecting subsets of the indifference hyperplanes
generated by the bids. This will be described in more detail in the following sub-
section. The algorithm will determine a set of candidate auction price vectors
using only the auction’s bids; supply curve information is not relevant.

2In principle, one could fairly easily define a tie-breaking rule to select a unique price vector
(such as choosing the lowest prices based on a lexicographic ordering of goods). Similarly, one
could choose amongst the valid assignments based on preferences of which goods to allocate,
and specify how to ration marginal bids to produce fairer results.

4

Two different strategies for finding candidate auction prices have been im-
plemented: one that exhaustively finds all indifference hyperplane intersections,
while the other adds a heuristic that reduces the number of points to try. The
next subsection explains the general idea in greater detail and specifies an ex-
haustive search over all the hyperplane intersections. The following subsection
covers the heuristic method.

3.2.1 Exhaustive method

A bid i with price vector vi generates two types of indifference hyperplanes:

• The hod for good j is the hyperplane with equation xj = vij . This splits

RN between bids that offer more than what the bid does for good j (the
region in which xj > vij) and on the other side bids that offer less.

• The flange for goods j and j′ (where j 6= j′) is the hyperplane with equa-
tion

xj

vi
j
− xj′

vi
j′

= 0. This splits RN between the bids that would prefer

buying good j on one side and good j′ on the other.

These hyperplanes divide up price space into Unique Demand Regions (UDRs).
Within a UDR, every bid’s demand is always for a unique good. On the bound-
aries, bids may be indifferent between receiving multiple goods. The optimal
value of the objective function must lie at a vertex of a UDR, since otherwise
the auctioneer can increase the prices (and hence their profit) without changing
the allocation of goods to bids.

Let H be the set of all such hyperplanes for all the bids, i.e. all the hods (for
all bids and all goods) and flanges (for all bids and all pairs of distinct goods).
The set of candidate price vectors S will be the set of unique points that can
be constructed as intersections of N hyperplanes from H.

Consider all the linear systems expressing the intersection of N distinct
hyperplanes from H (where N is the number of goods sold at the auction).
Each such system gives a set of N equations that a point (x1, . . . , xN) has to
satisfy to lie at the intersection of the N hyperplanes. Some hyperplanes will
be hods, others flanges. Such a system with N = 3 and a single bid with prices
(2, 4, 5) might be:

x1 = 2
x1
2
− x3

5
= 0

x2 = 4

(1)

Linear systems can be described in matrix form, for example, the above
system can be formulated as trying to find (x1, x2, x3) ∈ R3 such that:1 0 0

1
2 0 − 1

5
0 1 0

x1x2
x3

 =

2
0
4

5

Such a system has a unique, non-zero solution if and only if the matrix is
invertible, or equivalently, has rank N . The intersection is then non empty but
reduced to a single point, which will be a candidate auction price vector for the
rest of the algorithm.

The algorithm however does not consider systems that do not have at least
the equation for one hod in them, as for such a system, the right hand side of
the matrix equation above would be 0

...
0

which means that if there is a solution to the system that we call x ∈ Rn,

then λx is a solution too for any λ ∈ R, since A(λx) = λ(Ax) = λ · 0 = 0 (if
A is the N ×N matrix representing the system). In particular, the intersection
would not be reduced to a single point.

All valid linear systems are examined. Those systems whose matrix has rank
N are solved to find an intersection. The other systems are simply dropped.

3.2.2 Heuristic for searching fewer candidate prices

This heuristic reduces the number of candidate price vectors to check relative
to the exhaustive method of finding all indifference hyperplane intersections
described in the previous subsection. However, its correctness is not obvious,
and is outside the scope of this document.

An interaction is an ordered N -tuple of bids (i1, . . . , iN), where N is the
dimension (number of goods). Bids may appear more than once in a single
interaction. For example, (1, 1, 2) is the interaction that uses bid 1 to determine
the prices of two goods, and uses bid 2 to determine the other price.

A sequence s1 . . . sN is a permutation of the set of goods {1, . . . , N} repre-
senting the order in which to consider the goods. For example, 3 1 2 is a sequence
for 3 goods.

Intuitively, the heuristic works by specifying how to determine a candidate
price vector from an interaction and a sequence, where the sequence specifies the
order in which to consider the goods, and the bids in the interaction determine
the prices for each good in turn. We generate the set of all candidate price
vectors from all interactions and all sequences.

Given a bid i with prices vi, the rebased bid prices wi fixing good j to have
price p are given by:

wi
j′ =

vij′ · p/vij , if vij > p, j 6= j′

vij , if vij > p, j = j′

vij′ , otherwise

That is, if the bid’s price for j is greater than p, we multiply the bid’s prices for
other goods by the ratio of p to the bid’s price for j; otherwise we leave the bid
unchanged.

6

An interaction and sequence together may determine a single candidate price
vector p, or they may fail to determine a candidate. The candidate price vector,
if any, is determined by iterating through the bids in the interaction and the
goods in the sequence, according to the following algorithm:

At step 1, the candidate price ps1 for the first good in the sequence, s1, is
fixed to be the price given by the first bid in the interaction, i.e. ps1 = vi1s1 . For
each other bid in the interaction we then replace its prices with the rebased bid
prices fixing good s1 to have price p1. (The rebased prices are used by future
steps when computing the candidate price vector for the interaction/sequence
pair, but computation of candidate price vectors for other pairs uses the original
prices.)

At each subsequent step l, the candidate price psl for good sl is fixed to be
the price given by the lth bid in the interaction (with its prices having been
rebased once for each previous step), i.e. psl = vilsl . However, we must check
that earlier bids in the interaction maintain their preferred good. If vilsl < visl
for some i ∈ {i1, . . . , il−1}, we reject the interaction/sequence pair and do not
yield a candidate price vector. Otherwise, we again rebase the other bids in the
interaction, fixing good sl to have price pl, and continue with the next step.

When all N steps are complete, assuming the interaction/sequence pair was
not rejected, we have a candidate price vector p. By performing these steps for
every possible interaction and every possible sequence, recording the distinct
candidates where the algorithm was successful, we obtain a set S of candidate
price vectors.

For example, suppose we have three bids with prices of v1 = (10, 0, 10),
v2 = (20, 6, 0) and v3 = (0, 15, 15). For the interaction (1, 2, 3) and sequence
3 1 2 we proceed as follows:

• Start by fixing the price of good 3 to be p3 = v13 = 10. Rebase the other
bids: v2 is unchanged because 0 = v23 < 10, but now v3 := (0, 10, 15).

• Next fix the price of good 1 to be p1 = v21 = 20. We may continue, and
rebasing does not change the other bids, because this is the highest bid
price on good 1.

• Finally, fix the price of good 2 to be p2 = v32 = 10. We may continue,
because this is the highest bid price on good 2. (If instead we started with
v22 > 10, we would have rejected the interaction/sequence.)

• Thus we find the candidate price vector (20, 10, 10).

Note that where the interaction consists of the same bid repeated N times,
the bid price vector will always be a candidate price vector. Thus the set of
candidate price vectors always includes all the price vectors of all the bids in
the auction. It may include other price vectors due to rebasing.

3.3 Exploring quantity space

At this point of the algorithm, we have a set S of candidate auction price vectors
to try, so we can take each one in turn and evaluate the options for selling goods

7

to satisfy the bids. In contrast to the previous phase, the solver will at this point
make use of the supply curves in addition to the bids. We suppose we have a
fixed auction price vector z, and seek to construct a valid assignment of goods
to bids {xi} that maximises the objective function ψz.

For any winning non-marginal bid for good j, there are no options to explore.

Such a bid receives bi

zj
units of good j, where bi is the bid’s budget and zj is the

auction price for good j. Similarly, a non-winning bid simply receives no units.
For winning marginal bids, we have to explore multiple possible choices for

quantity assignments. We search a tree of possible assignments, where each
branch corresponds to a particular choice of xi for some bid i. Each of these
choices leads to a different branch in the search tree; going one level deeper in
the tree means exploring choices for one bid. Of course, we cannot consider all
possible assignments (as there are infinitely many); instead we consider a finite
set that is guaranteed to contain a profit-maximising assignment.

The search tries all possible choices for the order in which to consider
marginal bids, as assignment of quantities to bids changes the state of the algo-
rithm, and the respective updates for different bids do not necessarily commute
(processing bid i1 then i2 does not necessarily lead to the same quantity assign-
ments as processing i2 then i1).3

If at any point qj (the total quantity of good j sold so far) exceeds Rj (the
available supply of good j) we abandon the corresponding branch of the search
tree. It may be that there are no possible assignments that satisfy the winning
bids given the available supply, in which case we will reject the candidate price
vector entirely. There will always be some price vector for which this is not the
case (since increasing prices reduces demand).

At the end of the search, we have a tree where each node corresponds to
a partial definition of an assignment {xi}. The leaves of the tree represent se-
quences of choices that led to a state where all bid demands are satisfied, so they
represent complete assignments {xi} that are potential solutions to the auction.
We can then evaluate the objective function at each of these assignments to find
the one that maximises profit for the current prices.

The following subsections explain the search process in more detail.

3.3.1 Non-marginal bids

For each non-marginal winning bid i that prefers good j, set xij = bi

zj
and xij′ = 0

for j′ 6= j. For each non-winning bid i, set xij = 0 for all j.

This gives a partially defined assignment {xi}, which is used as the root of
the search tree.

It is possible that the non-marginal bids alone demand more than the avail-
able supply, in which case we reject the candidate price vector immediately.

3Since the number of permutations of marginal bids is large, we optimize this slightly by
identifying sets of marginal bids that are marginal in the same way (i.e. all marginal in a
common set of goods, or all marginal in the budget and a common set of goods). We then
find an assignment of quantities for the set of bids, and subsequently distribute the goods
between the bids.

8

3.3.2 Marginal bids

During the search, we have a partial assignment of goods to bids represented
by the current path in the search tree. In particular, we keep track of the total
quantity qj of each good that has been assigned so far.

For any marginal bid i that might receive some quantity of good j, we
consider all of the following choices for xij (in different branches of the search
tree):

• no units of good j: xij = 0;

• the rest of the bid’s budget’s worth of good j: xij = bi

zj
(if the supplies

allow it, i.e. provided qj + bi

zj
≤ Rj , where qj is the amount of good j sold

so far);.

• any quantity less than the rest of the bid’s budget’s worth of good j, which,
when added to the total quantity of that good sold so far, reaches the end

of a supply curve step (i.e. any xij <
bi

zj
such that qj +xij =

∑
q∈{1,...,k} s

q
j

for some k).

The third possibility includes the case where the bid receives all the remain-
ing supply of the good (i.e. qj + xij = Rj). In general, it may also be useful to
exhaust a supply step by selling to the current bid, but not sell more units of
that good (e.g. if the next supply step is significantly more expensive).

If the bid is marginal in several goods, we handle the goods in all possible
orders, exploring every combination of the above possibilities.4

Once the bid has been assigned a complete quantity vector xi, we check
that xi is a valid quantity vector (e.g. if the bid must spend its entire budget,
we check that it has done so). If so, we add the quantity vector to the partial
assignment {xi} and proceed with another bid. If not, we abandon the branch
of the search.

3.3.3 Example of marginal bid choices

For example, suppose we have auction prices of z = (2, 3), and a bid i with a
budget of 6 and prices of exactly vi = (2, 3). If the supply of both goods is
large and we are not near the end of any steps, we will try (all of) the following
possibilities for xi:

• (0, 0) (no units of either good)

• (0, 2) (no units on good 1, exhaust budget on good 2)

• (3, 0) (exhaust budget on good 1)

4We could investigate some optimizations to the search, as some branches are strictly
better than others. For example, if the height of the current supply curve step has exceeded
the auction price for a good, it is better to sell no units of that good to that bid where possible.

9

Now suppose that we have 2 more units of good 1 left on its current supply
curve step, and 1

2 a unit of good 2 on its current supply curve step (and in both
cases we have more units available at higher prices). We will additionally try:

• (2, 0) (exhaust supply step on good 1, no units of good 2)

• (2, 12) (exhaust supply steps on goods 1 and 2)

• (2, 23) (exhaust supply step on good 1, exhaust budget on good 2)

• (0, 12) (exhaust supply step on good 2, no units of good 1)

• (9
4 ,

1
2) (exhaust supply step on good 2, exhaust budget on good 1)

Each of these possibilities will lead to a separate branch of the search tree,
examining possible assignments to the other marginal bids.

If a supply step is not filled entirely and the budget of a bid receiving some
quantity of the corresponding good is not exhausted, profits can be increased.
So the optimal point has to be among all those permutations of quantity points
that either exhaust budgets or are located at the end of supply steps.

3.3.4 Example of search tree

Suppose we have two bids with a budget of b1 = b2 = 6, bid prices of v1 = (2, 3),
v2 = (4, 6) and we are evaluating the candidate auction prices z = (2, 3).
Suppose the total available supply is R1 = 4, R2 = 2 with a single step on each
supply curve. Observe that bid 1 is marginal in the budget and both goods,
while bid 2 is marginal in the goods but must spend its entire budget. The
search tree that we explore is shown in the figure.

Figure 1: Search tree

x1 = (0, 0)

x2 = (3, 0) x2 = (0, 2)

x1 = (0, 2)

x2 = (3, 0)

x1 = (3, 0)

x2 = (0, 2) x2 = (1, 43)

x2 = (3, 0)

|

x2 = (0, 2)

x1 = (0, 0) x1 = (3, 0)

x1 = (0, 0) x1 = (0, 2) x1 = (1, 0) x1 = (1, 43)

10

